Фрагмент учебно-методического пособия «Кибернетические основы информатики» в поддержку профильного курса информатики (Асаинова А.Ж. Кибернетические основы информатики. Задачник-практикум: Учебно-методическое пособие.- Павлодар, 2006. — 109 с.)

Раздел 1. СИСТЕМА И СИСТЕМНЫЙ АНАЛИЗ

1.1. Понятие «система», основное свойство системы

Система — это сложный объект, состоящий из взаимосвязанных частей (элементов) и существующий как единое целое. Всякая система имеет определенное назначение (функцию, цель).

К системам можно отнести человека, велосипед, науку информатику, Солнечную систему, книгу, библиотеку, семью, телевизор, систему химических элементов Менделеева и др.

Системы бывают материальные, нематериальные и смешанные. Примеры систем различных видов смотри в таблице 1.

Таблица 1

материальн	ые	нематериа	льные	смешанные
человек,	велосипед,	система	химических	семья, библиотека и др.
телевизор,	книга и др.	элементов	Менделеева и	
		др.		

Главное свойство любой системы - это возникновение «системного эффекта», принципа эмерджентности, заключающийся в том, что при объединении элементов в систему у системы появляются новые свойства, которыми не обладал ни один из элементов в отдельности. Например, основное свойство системы «телевизор»- это способность воспроизводить графику, видеоизображение и звуки. Ни одна из составляющих телевизора не может сама по себе показывать изображение, только их соединение вместе позволяет выполнить основную функцию системы - показ изображения. Если убрать какую-либо деталь (элемент) у телевизора, то система потеряет свою функцию.

Задачи

- №1. Рассмотрите перечисленные ниже объекты в виде систем и перечислите ее элементы, определите тип связи между элементами.
 - а) стол; б) книга; в) семья.
- №2. Рассмотрите перечисленные ниже объекты в виде систем и перечислите ее элементы, определите тип связи между элементами.
 - а) самолет; б) растение; в) фирма по оценке имущества.

Определите вид систем.

- №3 Рассмотрите перечисленные ниже объекты в виде систем и перечислите ее элементы, определите тип связи между элементами.
 - а) компьютер как автомат; б) «человек-компьютер»; в) государство.

Определите вид систем.

- №4. Рассмотрите окружающий мир с точки зрения системного подхода. Выделите системы, входящие в нее.
- №5. Дана система «велосипед», измените мысленно какой-либо элемент этой системы так, чтобы увеличить производительность работы велосипеда (скорость при небольших силовых затратах).
- №6. Изучите популяцию львов, рассмотрите ее как систему. Возможно ли это? Сохраняется ли здесь принцип эмерджентности?

1.2. Структура системы. Информационная модель.

Всякая система определяется не только составом своих частей, но также порядком и способом объединения этих частей в единое целое. *Структура* — это совокупность связей между элементами системы.

Так, например, система «Учебник» состоит из глав, параграфов, вопросов для самоконтроля, оглавления, списка литературы и т.д. Структура учебника представляет собой взаимосвязь глав, параграфов в главах, обусловленных логикой (последовательностью) изучаемого материала. Но сам по себе учебник не будет системой, поскольку он не несет цели, если он не используется обучающимся.

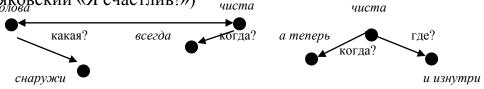
Любую структуру можно представить определенным образом в виде модели. *Информационная модель* системы - это ее описание. Одному и тому же объекту можно поставить в соответствие разные информационные модели - это зависит от цели моделирования.

Пример 1. Рассмотреть растение как систему и составить информационную модель ее структуры.

Для растения можно построить множество моделей:

- если рассматривать его как кибернетическую систему- то в ней будут выделяться такие элементы, как управляющий орган, управляемые элементы, канал управления в растении и т.д.
- если рассматривать его как растение, принадлежащее к определенному роду или виду, то выделяются такие элементы, называемыми органами растения (стебель, листья, корень, семязачаток и т.д.).
- рассмотрение растения с точки зрения медицинской значимости позволит выделить в нем другие элементы.

Растение как	Растение как объект,	Растение как
кибернетическая система	принадлежащий	лекарственное
	определенному роду,	средство
	виду	


Информационная модель в	Информационная	Информационная
виде системы управления,	модель цветкового	модель в виде
где управляющим органом	растения может быть	описания
является система	представлена в виде	химического
проводящих трубок,	формулы:	состава важнейших
управляемыми-органы	Ц5Л4Ч5,	лекарственных
растения.		частей растения.
Информация в растение		•
поступает в виде внешних		
биохимических воздействий.		

Информационные модели представляются также в виде графа, блоксхемы, таблицы и др. Так рассмотренную выше структуру учебника можно представить в виде иерархического дерева, отражение которого видно в оглавлении учебника.

С помощью графа можно представить структуру фразы, отражающей ее синтаксические свойства.

Пример 2. Определить структуру фразы, отражающей ее синтаксические свойства, и представить структуру в виде графа.

«Голова снаружи всегда чиста, а теперь чиста и изнутри.» (В.В.Маяковский «Я счастлив!») чиста чиста

Процесс исследования объекта и описание его в виде системы называется системным анализом. Результатом системного анализа объекта является описание элементов системы и ее структуры. Выделяются следующие этапы системного анализа:

- 1. определение цели исследования;
- 2. выделение основных элементов и подсистем;
- 3. определение и моделирование структуры системы;
- 4. выявление функций основных подсистем и системы в целом;
- 5. определение входов и выходов системы, а также способов взаимодействия с окружающей средой, моделирование процесса функционирования системы;
- 6. выявление системообразующих факторов, обуславливающих сохранение и/или развитие объекта как единого целого;
- 7. определение системоразрушающих факторов и условий их нейтрализации;
- 8. анализ этапов развития системы и ее перспектив.

Определить структуру объектов «компьютер», «школа», «оптический диск». Построить их информационные модели.

№8

Определить структуру объектов «компьютер-человек», «пищеварительная система человека», «текстовый процессор MS Word». Построить их информационные модели.

№9

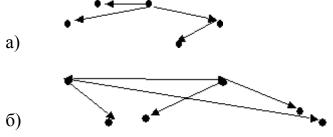
- В задании №9-13 определить структуру фраз, отражающей их синтаксические свойства, и представить структуру в виде графа:
 - а) «Мысль человеческая много сложней, чем знают у нас о ней».
 - б) «Таинственные звуки были слишком похожи на азбучные сигналы».
 - в) «Двойные удары хронометра, как склянки, прозвонили двенадцать».
- г) «Коляска пролетела по набережной, пустынной в этот час перед рассветом».

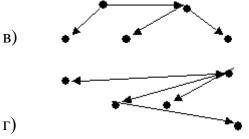
№11.

- а) «В комнату вбежала большая собака».
- б) «Закрыла усталые глаза старуха».
- в) «Луна светила яркая».
- г) «Дети забыли недавний разговор с родителями».

Nº12

- а) «Странную твою я душу знаю».
- б) «Последний день лета закончился неожиданно».
- в) «Плохим нельзя быть человеком».
- г) «Мать принесла воды мне напиться».


№13


- а) «Город строился быстро».
- б) «Стая с шумом села уток на озера гладь».
- в) «Капля меда словно жемчуг».
- г) «Гладь озера серебрилась под светом луны».

No14

Из нижеследующего списка предложений выберите те, структуры которых соответствуют схемам а)-г):

- 1. Его усыпляло непрерывное бормотание дождя.
- 2. Вчера мы посетили краеведческий музей.
- 3. Я памятник себе воздвиг нерукотворный.
- 4. Волчью вашу я давно натуру знаю.
- 5. Букет цветов ты подарил мне нежный.
- 6. Закрыла погасшие глаза старуха.
- 7. Дети забыли недавний разговор с родителями.

Nº15

Составьте предложения по структурам из задания №14.

№16

Провести системный анализ объектов:

- а) стол;
- б) ручка;
- в) книга;
- г) растительная клетка.

№17

Провести системный анализ объектов:

- а) мышь компьютера;
- б) велосипед;
- в) система счисления;
- г) система обучения математике во 2-ом классе.

№18

Провести системный анализ объектов:

- а) электронно-вычислительная машина;
- б) система «Учитель-Ученик»;
- в) Солнечная система;
- г) кровеносная система человека.

1.3. Принцип черного ящика

Система взаимодействует с окружающей средой. Для воздействия среды на систему существуют *входы* системы, а через *выходы* системы осуществляется воздействие системы на среду. Например, для мясорубки входом может быть являться мясо и вращение ручки, тогда выходом будет являться фарш, для телефонного автомата вход — монета (или телефонная карточка), на выходе — телефонный гудок; либо входом может быть набор номера, тогда выходом будет являться соединение/не соединение с нужным абонентом. Для всякой системы можно перечислить множество входов и выходов, не обязательно связанных с ее прямым назначением.

Зная входы и выходы системы можно узнать структуру системы, как она устроена. Так, например, имеется некоторая система, на вход которой подается значение 2. На выходе система выдает результат 4, если на входе-3, на выходе-9. Из этого результата видно, что структура системы отражает

зависимость, выражающуюся в виде математической формулы: 2^2 и 4^2 . Связь между входом x и выходом y будет равна $y=x^2$.

Для входов — мясо и вращение ручки и выхода — фарш существует определенная зависимость, выражающаяся в определенном строении мясорубки: наличие связи между ручкой и валиком, приводящей его в движении, связь валика и ножа, а также сетки, соответствующая форма полости мясорубки.

Указание «входов» и «выходов» системы, а также зависимости между ними означает представление системы в виде черного ящика. Такое описание позволяет целенаправленно использовать данную систему. Например, всякие инструкции для пользователей сложной бытовой техники являются описаниями черного ящика. В них объясняется, что нужно сделать на входе (включить, нажать, повернуть и пр.), чтобы достичь определенного результата на выходе (постирать белье, получить фруктовый сок, выполнить вычисления и пр.). Однако, что при этом происходит внутри — не объясняется.

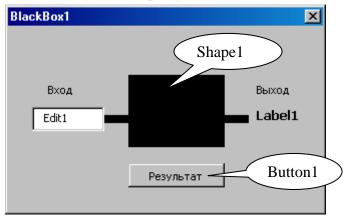
Для указанных выше примеров входы и выходы имеют различный тип: в первом случае это числовой тип, во втором — аналоговый. Числовые типы входных и выходных данных характеризуют систему, описанную на формальном языке. В такой системе входы и выходы характеризуются определенными величинами - чаще всего это числовые и символьные величины. Величины, характеризующие входы и выходы системы, называются параметрами.

Черный ящик можно представить в виде информационной модели, если входные и выходные данные системы записаны на формализованном языке. При этом важно выбрать средство разработки компьютерной информационной модели.

Пример 1. В результате работы черного ящика получен список соответствующих значений параметров на входе и выходе. Определить, принцип работы системы и построить компьютерную модель ее функционирования.

1)										
Вход		1		2			3		4	
Выход		1		4			9		16	
2)										
Вход 1	-5		2		5	2		7	6	10
Вход 2	3		2		4	3		10	11	15
Выход	Н	ет								
	ре	езультата	2		3	2,236	068	4,123106	4,123106	5
3)										
Вход		a		ва	П		кен	пк		
Выход		1		3			5		0	

Решение:


В первом задании соблюдается зависимость $y=x^2$. Для создания компьютерной модели системы воспользуемся табличным процессором MS Excel и оформим лист следующим образом.

	Файл Правка Вид Вставка Формат Сервис Данные Окно Справка										
	= 🖫 🔒		ο 🗸 🚇 Σ	f≈ Å↓	🌉 📿 💝 🛚 Aria						
(тепень	▼ ★ ▼ = =СТЕПЕНЬ(В2;2)	2)								
	Α	В	С	D	Е						
1											
2		1	2	3	4						
3		=CTEПЕНЬ(B2 ;2)	4	9	16						
4			Ī								

Для вычисления функции x^2 в табличном процессоре используется функция СТЕПЕНЬ. Формат функции: СТЕПЕНЬ (степень, число_возводимое_в_степень). Для ячеек С3:Е3 заполняются формулы с учетом текущих ячеек (можно копированием формулы в соседние ячейки). В данном задании можно использовать не только функцию, но и формулу с операцией возведения в степень ($^{^{\wedge}}$).

Компьютерную модель можно реализовать не только в табличном процессоре. Воспользуемся языком программирования Delphi (для IDE Delphi 7).

Создайте проект под названием BlackBox1.dpr. Спроектируйте форму так, как показано на следующем рисунке.

Нажмите дважды на элемент Button1 и в открывшемся обработчике события запишите следующий код (жирным шрифтом):

```
Procedure Button1Click (Sender:TObject);
```

Begin

Label 1. caption := Int To Str(SQR(Str To Int(edit 1.text));

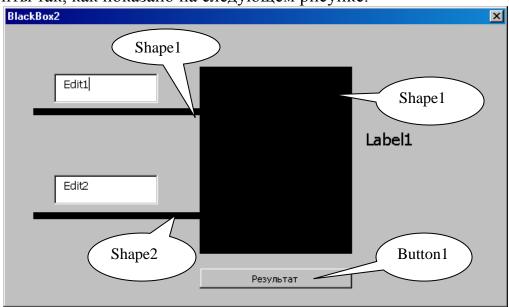
End;

Или:

Procedure Button1Click (Sender:TObject);

Begin

Label1.caption:=IntToStr(StrToInt(edit1.text)*StrToInt(edit1.text));


End:

Во втором задании имеются уже два входа и один выход. Тип входных и выходных данных - числовой, поэтому зависимость между входными и выходными данными представляется в виде математической функции. Это функция нахождения корня суммы двух чисел. Числами и будут значения на входе и выходе.

	, ,												
	Файл Правка Вид Вставка Формат Сервис Данные Окно Справка												
	□ 🛩 🔒 🔒 🐧 💖 🐰 🗈 💼 🗠 ν ν 🌯 Σ 🏂 🛊 🕍 🙋 😲 Arial Cyr 🔻 16 🔻 Ж												
	<u></u> Х ✓ = =КОРЕНЬ(А2+А3)												
	Α	В	С	D	Е	F	G						
1													
2	2	5	2	7	6	10	-5						
3	2	4	3	10	11	15	3						
4	_=КОРЕНЬ(A <mark>2</mark> +A3)	3	2,24	4,12	4,12	5	#ЧИСЛО!						
-5													

Поскольку для отрицательных значений двух входов результат на выходе не имеется (под корнем получается отрицательное число), то система выдала ошибку (на рисунке - #ЧИСЛО!).

Создадим проект, назовем его BlackBox2.dpr. Добавим на форму элементы так, как показано на следующем рисунке.

B Edit1 и Edit2 вводятся значения входных сигналов. При нажатии на кнопку Результат в Label1 должен появляться результат – это выход системы.

Нажмите два раза на Button1 для создания обработчика события, появится заготовка процедуры. Внутри процедуры нужно записать следующий код (написано жирным шрифтом):

Procedure Button1Click (Sender:TObject); Begin

try

 $Label 1. caption := Float To Str(SQRT(StrToFloat(edit1.text) + StrToFloat(edit2.text))); \\ Except$

```
Label1.caption:='Решения нет';
End;
End;
```

В третьем задании используется другой тип входных и выходных данных - строковый. Поэтому используются в табличном процессоре строковые функции. Компьютерная модель черного ящика, реализованного в табличном процессоре, представлена ниже.

	🖺 <u>Ф</u> айл <u>П</u> равка <u>В</u> ид Вст <u>а</u> вка Фор <u>м</u> ат С <u>е</u> рвис <u>Д</u> анные <u>О</u> кно <u>С</u> правка											
	□ 🐸 🔒 🔒 🐧 💖 🐰 🖺 📵 👂 Σ 🏂 🖟 🖟 🕍 🕮 🙋 😲 Arial Cyr 🔻 16 🔻											
0	<u>▼ X J = =ДЛСТР(В3)</u>											
	Α	В	С	D	Е							
1												
2												
3		a	вап	кенпк								
4		=ДЛСТР(<mark>В3</mark>)	3	5	0							
5												
6												

Функция ДЛСТР позволяет определить длину слова. Ячейки С4:Е4 содержат ту же формулу с учетом изменения ячейки.

Компьютерная модель, созданная с помощью языка программирования, выглядит также как и первая, только меняется код обработки события на нажатие клавиши Button1.

Procedure Button1Click (Sender:TObject);
Begin
Label1.caption:=IntToStr(length(edit1.text));
End;

Задачи

№12

Рассмотрите объект как систему и определите ее входы и выходы.

а) телевизор; б) электроплита; в) растение; г) автомобиль; д) система управления в правовом государстве (триединая власть).

№13

Подумайте, зная входные и выходные данные для систем из задач №7-8, легче определить структуру систем? Из списка, представленного ниже, выберите подходящие входные и выходные данные для систем из задач №7-8 и в зависимости от них представьте их структуры.

Приказ из РОНО/ГорРОНО

Есть углубление в слое или нет

Намагничен участок или не намагничен

Исполнение Приказа

Текст, абзац, символ

Еда

Обученность учащихся

Редактированный и форматированный текст

Нажатие клавиш, управление манипулятором компьютера

Состояние человека после еды

Состояние компьютера (в данный момент)

№14

В результате работы черного ящика получен список соответствующих значений параметров на входе и выходе. Определить, принцип работы системы и построить компьютерную модель ее функционирования.

1)															
Вход			1	2	3	4	Ļ	5	6	7	12	13	20	100)
Выход			2	2	4	4	ļ	6	6	8	12	14	20	100	
2)															
Вход												9			27
	0	1		1	5		30	45		60		0	100		0
Выхо		0,0	01745),2588	1	0,	0,70	0710	0,8	36602		0,984	180	
Д	0	2		9)		5	7		5		1	8		-1
3)															
Вход 1		2		,	1	3		10		4			56		
Вход 2		5		(6	9		1		4			25		
Выход		3,5	5		3,5	6	•	5,5		4			40,5		

№15

В результате работы черного ящика получен список соответствующих значений параметров на входе и выходе. Определить, принцип работы системы и построить компьютерную модель ее функционирования.

						_				1 2	
1)											
Вход	1	2		10		56		-1			
Выход	a	б		К		He		He	;		
						MOI	У	MO	гу		
2)											
Вход		2	3		5		8		21	34	
Выход		3	5		8	_	13	3	34	55	

№16

В результате работы черного ящика получен список соответствующих значений параметров на входе и выходе. Определить, принцип работы системы и построить компьютерную модель ее функционирования.

1)								
Вход	ac		абвгде		ЬЬЬ		ма	ма
Выход	бт	i	бвгдеё	бвгдеё		ыыы		нб
2)								
Вход	ac		абвгде		ЬЬЬ		ма	ма
Выход	c		б		Ь		a	
3)								
Вход		ac	абвгде	свет	Γ	мама		пренгке
Выход		a	б	e		a		Γ

В результате работы черного ящика получен список соответствующих значений параметров на входе и выходе. Определить, принцип работы системы и построить компьютерную модель ее функционирования.

1)

Вход	ac	абвгде	свет	мама	пренгке	вакенг
Выход	a	e	c	a	П	Γ
2)						

2)

Вход	ac	абвгде	свет	мама	приоритет
Выход	б	e	Γ	Γ	3

3)

Вход	ac	абв	свет	мама	априори
Выхо	caca	вбавбав	тевстевстевс	амамамамамама	ироирпаироирп
Д		ба	тевс	мам	аироирпаироир
					паироирпаирои
					рпаироирпа

№18

В результате работы черного ящика получен список соответствующих значений параметров на входе и выходе. Определить, принцип работы системы и построить компьютерную модель ее функционирования.

1)

Вход	ae	аб	свет	мама	пренгке	вакенг	ЫЫЫ	Ая
Выход	6	2	19	1	6	4	29	33

2)

Вход	ac	абвгде	свет	мама	приоритет
Выход	1	4	3	2	5

3)

Вход	ac	абв	свет	мама	априори
Выход	00	011	1101	1010	0110010