ЗА БЕЛЕЖКИ

	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
-	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

МАТЕРИАЛИ

ЗА Х МЕЖДУНАРОДНА НАУЧНА ПРАКТИЧНА КОНФЕРЕНЦИЯ

«КЛЮЧОВИ ВЪПРОСИ В СЪВРЕМЕННАТА НАУКА -2014»

17 - 25 април 2014 г.

Том 37 Технологии

София «Бял ГРАД-БГ» ООД 2014

То публикува «Бял ГРАД-БГ» ООД, Република България, гр.София, район «Триадица», бул. «Витоша» №4, ет.5

Материали за 10-а международна научна практична конференция, «Ключови въпроси в съвременната наука», - 2014. Том 37. Технологии. София. «Бял ГРАД-БГ» ООД - 88 стр.

Редактор: Милко Тодоров Петков

Мениджър: Надя Атанасова Александрова

Технически работник: Татяна Стефанова Тодорова

Материали за 10-а международна научна практична конференция, «Ключови въпроси в съвременната наука», 17 - 25 април, 2014 на Технологии.

За ученици, работници на проучвания.

Цена 10 BGLV

ISBN 978-966-8736-05-6

© Колектив на автори, 2014

© «Бял ГРАД-БГ» ООД, 2014

ЗА БЕЛЕЖКИ

•	

Наиболее подробно остановимся на электрических машинах постоянного тока, главное достоинство которого является жесткая механическая характеристика (прямая линия параллельная оси нагрузки).[2] Существенными недостатками данной машины постоянного тока являются:

- высокая стоимость по сравнению с электрической машиной переменного тока;
- наличие коллектора в конструкции машины;
- уменьшение надежности машины за счет наличия токосъёмных щёток.

Использование асинхронного двигателя так же имеет ряд недостатков:

- мягкая механическая характеристика;
- регулирование скорости двигателя, за счет изменения частоты питающей сети;
- низкий момент на валу во время пуска двигателя под нагрузкой.

Выбор и решение поставленной задачи

Перечисленные выше недостатки асинхронного двигателя можно исправить применением специальной схемы управления. Для реализации данной задачи мы используем асинхронный двигатель с фазным ротором, к которому будут подключены два преобразователя частоты настроенных определенным образом, такое включение обеспечивает асинхронизированный режим работы. На рисунке 1 представлена схема асинхронного двигателя с фазным ротором работающего в режиме асинхронизированного вентильного двигателя (АВД).[3] Схема состоит из двух преобразователей частоты (ПЧ1, ПЧ2) « Омега -2» отечественного производства ОАО «Электровыпрямитель».

Частотный преобразователь ПЧ1 предназначен для управления в цепи статора, ПЧ2 подключён к статорной обмотке и является цепью возбуждения АВД.[4,5,6]

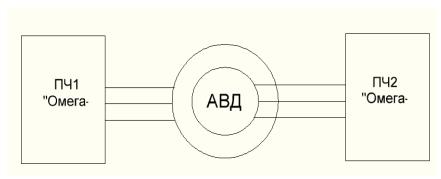


Рисунок 1 Структурная схема АВД

Для реализации данной системы необходимо модернизация частотного преобразователя ПЧ1 с внедрением DSP процессора позволяющего нам перевести преобразователь в нужный нам режим управления. Осуществление поставленной задачи решается с помощью программных средств MATLAB и Code

СЪДЪРЖАНИЕ

ТЕХНОЛОГИИ

ЕЛЕКТРОИНЖЕНЕРСТВО И ЕЛЕКТРОНИКА

Кодин Г.Г. Разработка анализатора спектра звуковой частоты	3
Волков А.В., Герман О.Ю., Майоров В.Е., Лапшина В.А.	
Метод управления серийными преобразователями частоты для реализации	
электропривода на базе асинхронизированного вентильного двигателя	5
Черных А.Г., Епифанов А.Д., Сурков С.Ю. Оценка предельных значений	
параметров изоляции сети с напряжением 220 - 1000 вольт	
при прикосновении к корпусу заземленного оборудования	10
Мирзакулова Ш.А. Исследование автокорреляционной функции сетевого трафика	16
Мирзакулова Ш.А. Анализ сетевого трафика	
Яремчук О.М. Пристрій для електростимуляції стовбура спинного мозку	21
Чижов А.А., Панов Д.В., Костомаров И.Н. Применение проекционного	
метода решения некорректных задач для обоснования способов	
сверхразрешения воздушных целей в радиолокационных станциях	28
РАЗРАБОТКАТА НА МАТЕРИАЛИТЕ Е НА ИНЖЕНЕР	
Бровер А.В., Бровер Г.И. Самоорганизация поверхностных слоёв стали	
при импульсной лазерной обработке	34
Курманбаев Г.Б., Калыбаева А.К., Бектас Д.Б., Камалова Г.Н.	
Разработка установки по рекультивации и утилизации	2.0
нефтезагрязненной почвы	36
Бруяка О.О., Попова А.А. Исследования напряженно-деформированного состояния плазменно-ионного ускорителя	40
Марьина Н.Л., Селифонов С.К., Разуваев А.В.	
Упрочнение поверхностного слоя деталей способом	
дифференцированной гидродробеструйной обработки	43
Дудак Н.С., Касенов А.Ж., Муканов Р.Б., Таскарина А.Ж.	
Применение системы APM WinMachine при проектировании	
металлорежущих инструментов	47
Лапковський С.В., Рогожа О.М., Хлюпка Т.М. Питання вибору моделей металорізальних верстатів	50
Литвин О.В. Управління похибками автоматизованої обробки	
при закріпленні заготовок різного діаметру	52
1 1 12	

Резюме

Бұл жұмыста мұнайланған жерлерді рекультивациялау мен оны утилизациялау жөніндегі жүргізілген, әр түрлі практикалық және ғылыми-зерттеу ізденістері көрсетіліп, оның электрохимиялық әдістеріне тоқталған. Аталған әдіс бойынша рекультивация-энергетикалық кешен жасалып, оның құрылысы мен жұмыс істеу принциптері және тиімді жақтары мен ерекшеліктері көрсетілген.

Rezume

Various researches and practical experiences were explored in the sphere of oil-contaminated land reclamation and its utilization under this project. The variety of petroleum products reclamation options were collated and electrochemical method is chosen as a relevant and a perspective. The reclamation power complex was worked out where construction and operation principles and also its effectiveness and specialty are described.

Литература:

- 1. Мунайшы 2008. №2. С. 18–23.
- 2. Мамедов А.П., Папова Л.Я., Джафарова Р.А., Ма-медов А.Н. // Нефтехимия. 1988. Т. 28, № 4. С. 442–44.
 - 3. Экология нефти в регионах Казахстан Мунайшы 2006. №1. С. 12–15.
- 3. Джафарова Р.А., Мамедов А.П., Рустамов М.И. и др. // Нефтехимия. 2004. Т. 44, № 33. С. 232–236.

К.т.н. Бруяка О.О., Попова А. А.

Горловский автомобильно-дорожный институт Донецкого национального технического университета

ИССЛЕДОВАНИЯ НАПРЯЖЕННО-ДЕФОРМИРОВАННОГО СОСТОЯНИЯ ПЛАЗМЕННО-ИОННОГО УСКОРИТЕЛЯ

Ионно-оптическая система (ИОС) плазменно-ионного ускорителя (ПИУ) является наиболее теплонапряженной его частью, которая часто подвергается действию привязок разряда, которые в свою очередь вызывают температурные напряжения, которые влияют на конфигурацию оптики, приводя к изменению размера слоя наноструктур.

Анализ теоретических и экспериментальных зависимостей максимальных перемещений сетки ИОС ПИУ от времени (рис. 1) свидетельствует о том, что величины перемещений сетки во время выхода на стационарный режим по перемещениям близки как для теоретических расчетов, так и в экспериментальных моделирующих исследованиях. По перемещениям исследованные теоретические режимы перекрывают практически полностью полученные в эксперименте, а во времени для всех режимов по их перемещениям достоверные данные отсутству-

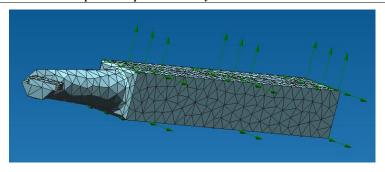


Рисунок 2 — Конечно-элементарная сетка токарного резца с напаянной пластиной

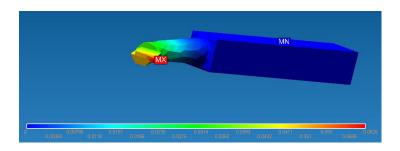


Рисунок 3 — Суммарное линейное перемещение токарного резца с напаянной пластиной

Аналогично выполнен расчет конструкций новых металлорежущих инструментов – резцовых сборных разверток. Исходные данные: материал вставного зуба-резца инструмента – T15K6, а остальные составные детали – Сталь 45. Диаметр обработки 45 мм, обрабатываемый материал – Сталь 45. Закрепление выполняем на корпусе развертки по конусу Морзе. Режимы резания рассчитывались по двум вариантам: s=1,4 мм/об; n=160 об/мин, t=0,25 мм. Параметры нагрузки на четыре втавных зуба-резца: $P_x=328; P_y=612; P_z=918; T=533$ $^{\circ}C; s=1,4$ мм/об; n=160 об/мин, t=0,5 мм. Параметры нагрузки на на четыре втавных зуба-резца: $P_x=656; P_y=1144; P_z=1836; T=754$ $^{\circ}C$.

Анализ результатов прочностного расчёта резцовой сборной развёртки и расточного резца показал, что применение резцовой сборной развёртки даёт меньшие упругие отжатия, что повышает точность и качество обрабатываемых отверстий деталей машин.

известных и широко распространенных программных обеспечивающих прочностной расчет моделей конструкций, как ANSYS, NASTRAN, COSMOS и некоторых других. Это весьма мощные программные средства, но и столь же недешевые, к тому же имеющие англо-язычный интерфейс. Кроме того, редакторы моделей этих пакетов весьма сложны и требуют длительной подготовки пользователя. Отечественный модуль конечноэлементного анализа APM Structure3D, входящий в состав CAD/CAE Системы APM WinMachine, созданной В Научно-техническом «Автоматизированное проектирование машин» (НТЦ АПМ), представляет собой в какой-то степени альтернативу указанным программных продуктам [1].

На основании вышеизложенного для всестороннего инженерного анализа проведем прочностной расчет расточного токарного резца с напаянной пластиной используя продукт APM WinMachine.

Принимаем следующие исходные данные: материал расточного токарного резца — Сталь 45, твердосплавная напаянная пластина Т15К6. Диаметр обработки 45 мм, обрабатываемый материал — Сталь 45. Закрепление выполняем на корпусе резца. Режимы резания: s=1,4 мм/об; n=160 об/мин, t=0,25 мм. Параметры нагрузки напластину: $P_x=218$; $P_y=408$; $P_z=612$; T=533 0 C.

Процесс подготовки к прочностному расчету состоит из нескольких этапов: создание и импорт 3D модели в редактор APM Studio; присвоение составным деталям параметров материала; моделирование действующих нагрузок; задание опор (закрепление); определение совпадающих поверхностей деталей; генерация КЭ-сетки.

Далее выполняются расчеты: статический, тепловой или усталостный в зависимости от конкретных условий, результаты которых представлены на рисунках 1-3.

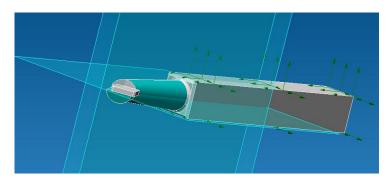
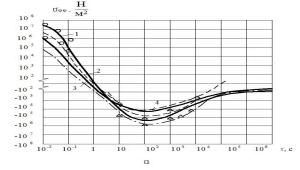



Рисунок 1 – 3D модель токарного резца с напаянной пластиной

ют, так как измеряемые перемещения по величине лежат в диапазоне величин погрешности измерений. Перекрытие исследуемого теоретически диапазона мощностей ПИУ моделируются по перемещениям, а некоторые их отличия при исследовании температур, очевидно, связаны с более локальным теплоподводом в моделирующем эксперименте по сравнению с теоретической моделью, что приводит к более значительным перемещениям в моделирующем эксперименте.

Действие привязки разряда, очевидно, также будет влиять на характер изменения температур, перемещений и напряжений в сетках ИОС ПИУ в режиме запуска, поэтому было проведено исследование перемещений, температур, нормальных и касательных температурных напряжений при моделировании привязки разряда электронным пучком с энергией электронов $10^3...10^4$ эВ и плотностью тока $10^4...7\cdot10^4$ А/м² и временем действия 10^6-10^3 с (с частотой следования от 0,5...200 Гц.)

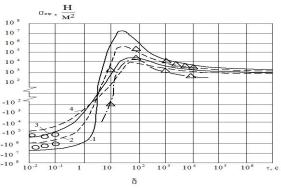


Рис. 1. Зависимость максимальных температурных напряжений (а) и перемещений (б) сетки ИОС от времени работы ПИУ при мощностях: 1 – 220 Вт, 2 – 1100 Вт, 3 – 900 Вт, 4 – 650 Вт – теоретические кривые и 2+ и 3+ – экспериментальные зависимости

Исследование действия единичных потоков электронов при малой частоте срабатывания $(0,5\Gamma_{\rm H})$ показало существенное влияние времени действия потока электронов на величину максимального перемещения.

Значительное влияние на максимальное перемещение оказывает число срабатываний. Наибольшие по величине перемещения (порядка $6\cdot 10^{-6}$ м) реализуются при числе срабатываний n=200.

При этом температура в месте действия электронного потока также зависит от времени действия и числа срабатываний электронной пушки. Максимальные температуры реализуются при длительности импульса 10^{-3} с и наибольшем числе срабатываний электронного источника n=200, когда максимальные значения температур достигают значений порядка $850~\rm K$.

Температурные напряжения как нормальные, так и касательные определялись теоретическим методом по величине температур и перемещений. При большом числе срабатываний нормальные напряжения значительные по величине и отрицательные по знаку, при малом числе импульсов они положительны и незначительны по величине, так как они локализированы в малом объеме и не существенно влияют на процесс макродеформирования.

Для касательных температурных напряжений характер распределения близок, но при большом числе срабатываний реализуются растягивающие напряжения, а при малом –сжимающие напряжения, которые приближаются к $10^7 \ \text{н/m}^2$, что говорит о возможности реализации термоусталостных эффектов при длительном их действии.

Литература

- 1. Костюк Г.И. Нанотехнологии: теория, эксперимент, техника, перспективы [Текст]: моногр./ Г.И. Костюк.-К.:Изд. ц. Межд. академ. наук и иннов. техн., 2012.-648 с.
- 2. Костюк Г.И. Эффективные покрытия и модифицированные упрочненные слои на режущих инструментах [Текст]: моногр.-справ./ Г.И. Костюк.- К.:Изд. ц. Межд. академ. наук и иннов. техн., 2012. 728 с.
- 3 Костюк Г.И. Эффективные покрытия и модифицированные и упрочненные слои на режущих инструментах. Моногр.-справочник / Г.И. Костюк. Издво Междунар. академии наук и инновационных технологий, Киев, 2012, 728 с.

На основании выявления основных направлений совершенствования производства коленчатых валов прослеживается постепенный переход от заготовок проката к кованным и далее к точноштампованным.

В поверхностном слое высоконагруженных деталей уровень начальных остаточных напряжений наводят дифференцированным гидродробеструйным упрочнением $\sigma_{xx}^{01} = -(0,1-0,15)\sigma_{0.2}$; σ_{xx}^{01} — начальные сжимающие остаточные напряжения; $\sigma_{0.2}$ - предел текучести материала детали.

Превышение верхнего предела σ_{xx}^{01} во всех зонах щеки и противовеса коленчатого вала приводит к нарушению адекватности напряжений разгрузки — σ_{xx}^{01} напряжениям нагрузки $\sigma_{m}^{\rho a \delta}$ и не обеспечивает выравнивание напряженности смежных объемов металла и, следовательно, их равнопрочность. При уменьшении нижнего предела — σ_{xx}^{01} значительно падает эффективность упрочняющего влияния параметров начальных остаточных напряжений как самостоятельного фактора, а так же нарушается условие обеспечения адекватности распределения — σ_{xx}^{01} распределению $\sigma_{xx}^{\rho a \delta}$.

Дудак Н.С., Касенов А.Ж., Муканов Р.Б., Таскарина А.Ж.

Павлодарский государственный университет имени С. Торайгырова Республика Казахстан

ПРИМЕНЕНИЕ СИСТЕМЫ APM WINMACHINE ПРИ ПРОЕКТИРОВАНИИ МЕТАЛЛОРЕЖУЩИХ ИНСТРУМЕНТОВ

В настоящее время актуальна проблема сочетания в процессе проектирования двух взаимоисключающих тенденций: экономии материала, с одной стороны, и обеспечения требуемых прочностных характеристик конструкций, с другой стороны. Все это можно обеспечить за счет использования компьютерных технологий. Сегодня невозможно создать качественное, надежное и конкурентоспособное оборудование без всестороннего инженерного анализа проектируемых объектов с помощью современных программных средств и принятия на его основе грамотных конструктивных решений. Под инженерным анализом понимается, в первую очередь, исследование напряженнодеформированного состояния моделей проектируемых конструкций, получение их динамических характеристик и характеристик устойчивости при постоянных и переменных режимах внешнего нагружения.

Наиболее эффективным приближенным методом решения такого класса задач является метод конечных элементов (МКЭ). МКЭ реализован в таких