ЕЖЕМЕСЯЧНЫЙ НАУЧНО-ТЕХНИЧЕСКИЙ ЖУРНАЛ

Учредитель 000 «СТИН»		Журнал входит в перечень утвержденных ВАК РФ изданий для публикации трудов соискателей ученых степеней
		СОДЕРЖАНИЕ
ОБЩИЕ ВОПРОСЫ МАШИНОСТРОЕНИЯ	Дмитриев О. Н., Новиков С. В.	Инструментарий обоснования решений по обеспечению технической исправности станочного парка критически важных кооперированных и распределенных промышленных производств
АВТОМАТИЗАЦИЯ ПРОИЗВОДСТВА	Радыгин А. Б., Сергеев А. И., Сердюк А. И.	Компьютерное моделирование работы гибких производственных систем с учетом вероятностных возмущений
МЕТАЛЛОРЕЖУЩИЕ СТАНКИ	Хостикоев М. З., Данилов И. К., Набатников Ю. Ф., Тимирязев В. А.	Расширение состава применяемого режущего инструмента для повышения эффективности и технологических возможностей многоцелевых станков
	Вавилов В. Е.	Оптимизация новой конструкции гомополярного магнитного подшипника
МЕТАЛЛООБРАБАТЫВАЮЩИЙ ИНСТРУМЕНТ	Дубров Д. Ю., Чукарин А. Н., Ямполец Р. А.	Фреза с автономным двухфазным охлаждением 21
	Муканов Р. Б., Касенов А. Ж., Итыбаева Г. Т. и др.	Торцовое точение отверстий
	Пучкин В. Н., Рыжкин А. А., Туркин И. А. и др.	Влияние количества карбидов и легирующих элементов на межкристаллитную коррозию в пластинах из режущей керамики
ТЕХНОЛОГИЯ МЕХАНИЧЕСКОЙ ОБРАБОТКИ	Равикович Ю. А., Курочкин А. В., Кожина Т. Д.	Методика выбора температурных режимов предварительного нагрева штамповок крупногабаритных широкохордных лопаток компрессоров
	Изнаиров Б. М., Васин А. Н., Насад Т. Г. и др.	Сборка шарико-винтовых передач по вероятностным параметрам винта и гайки

При прерывистом резании (процесс фрезерования) происходит резкое изменение температуры в моменты входа и выхода режущей кромки из контактной зоны, что приводит к термическому шоку в циклическом режиме и способствует преждевременному выходу из строя инструмента. Использование метода двухфазного охлаждения сглаживает эффект термического шока, возникающий при прерывистом резании.

Список литературы

1. **Клокке Ф., Гершвиллер К.** Сухая обработка основы: границы, перспективы // Сообщение VDI 1240 «На пути к сухой обработке — технологический вызов». — Дюссельдорф: Изд-во VDI, 1996. — С. 1—39.

- 2. Васин С. А., Верещака А. С., Кушнер В. С. Резание материалов: термомеханический подход к системе взаимосвязей при резании: Учебник для вузов. М.: Изд-во МГТУ им. Н. Э. Баумана, 2001. 448 с.
- 3. **Верещака А. С., Кушнер В. С.** Резание материалов: Учебник. М.: Высш. шк., 2009. 535 с.
- 4. **Dubrov Dmitry Y.** The use of cutters with two-phase cooling devices in the processing of titanium alloys / Yuri S. Dubrov, Dmitry Y. Dubrov // Second International conference «Heat pipes for space application» 15—19 September 2014 Moscow, Russia {Электронный ресурс www.heatpipe.ru}.
- 5. **Дубров Д. Ю.** Повышение периода стойкости сборных резцов испарительным охлаждением при сухом резании [Текст]: Автореферат дисс. ... канд. техн. наук: 05.02.07 / Дмитрий Юрьевич Дубров. Брянск. 2015. 19 с.
- 6. **Живоглядов Н.И., Заславский И. Я.** Фреза с автономным внутренним охлаждением. Описание изобретения к авторскому свидетельству [А. св-во № 1292940, МПК В23С 5/28, опубл. 28.02.1987 г.] {Электронный ресурс http://patents.su/2-1292940-freza-s-avtonomnym-vnutrennim-okhlazhdeniem.html}.

УДК 621.941.1

Торцовое точение отверстий

Р. Б. Муканов 1 , к.т.н. А. Ж. Касенов 2 , к.т.н. Г. Т. Итыбаева 3 , к.т.н. Ж. К. Мусина 4 , к.т.н. К. К. Абишев 5 , к.т.н. П. О. Быков

// Павлодарский государственный университет им. С. Торайгырова Республики Казахстан, 140008, г. Павлодар, ул. Ломова 64. E-mail: ¹ruslangr82@mail.ru, ²asylbek_kasenov@mail.ru, ³galia-itibaeva@mail.ru, ⁴mussina_zhanara@mail.ru, ⁵a.kairatolla@mail.ru

Аннотация. В статье представлена конструкция резцовой головки с асимметрично расположенными резцами, которые осуществляют торцовое точение отверстий. Резцовая головка имеет повышенную стойкость, обеспечивает возможность обработки неглубоких отверстий с плоским дном, повышается производительность и точность; уменьшается отклонение формы и снижается шероховатость обрабатываемой поверхности. Ключевые слова: точение, отверстие, резцовая головка, точность, отклонение, шероховатость, качество.

Abstract. This article presents the Design of the tool block. Cutters of the tool block are located asymmetrically. Cutters carry out butt-end turming of holes. The tool block has a high durability, permits production of shallow bores with flat bottom, increases manufacturing capability, precision, reduced form deviation and asperity of finished surface. **Keywords:** turning, hole, tool head, accuracy, deflection, roughness, quality.

Сверление отверстий характеризуется невысокими скоростями резания и малым периодом стойкости из-за конструктивных недостатков сверл (наличия сердцевины и возникновение поперечной кромки при заточке) [1].

Спиральные сверла имеют поперечную режущую кромку, которая обеспечивает неблагоприятные условия резания: в зоне поперечной кромки вместо резания происходят смятие, выдавливание и скобление, что сопровождается более высокой температурой и механическим напряжением на ре-

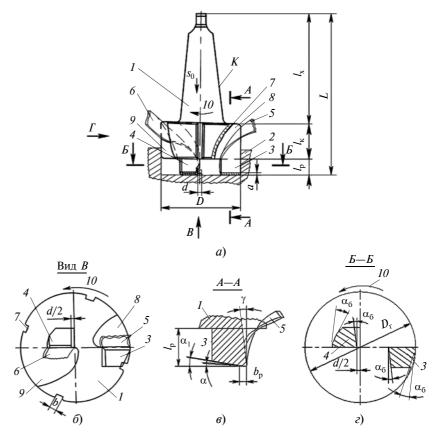
жущей части в зоне резания, повышенным износом, снижающими стойкость и точность обработки [2].

При проектировании новых конструкций металлорежущего инструмента стремятся усовершенствовать их геометрические параметры и конструктивные элементы, а также использовать материалы с повышенными режущими свойствами и новые материалы [3—12].

Резцовая головка относится к режущим инструментам и представляет собой новый высокопроизводительный инструмент для точения сплошных отверстий — резцовую головку с асимметрично расположенными резцами, оснащенными сменными неперетачиваемыми пластинами твердого сплава, позволяющими получать любую форму дна глухого отверстия или обрабатывать сквозные отверстия в сплошном материале [13—15].

Режущая часть инструмента выполнена в виде резцов, расположение и конструкция которых позволяют заменить сверление торцовым точением с использованием всех преимуществ точения перед сверлением. Новый инструмент имеет повы-

СТИН. 2018. № 8


шенную жесткость, не имеет поперечной кромки, работа резания распределена равномерно по длине лезвий, уменьшаются удельное давление и температура в зоне резания, что способствует повышению стойкости и улучшению качества обработки путем выполнения на корпусе выглаживающих элементов, позволяющих уменьшить отклонения от круглости отверстия и шероховатость.

Резцовая головка имеет следующие конструктивные элементы: корпус, на котором асимметрично расположены резцы для последовательного срезания материала в отверстии; хвостовик, форма которого зависит от конструкции шпинделя или втулки для закрепления инструмента (конический, цилиндрический, цилиндрический, цилиндрический гладкий с лыской или без лыски или резьбовой).

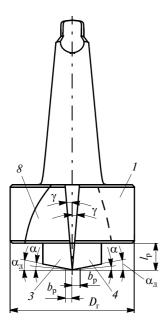
Предлагаемая резцовая головка не имеет поперечной кромки, потому условия работы при точении отверстий значительно легче и мож-

но повысить скорость резания, а точность обработки значительно выше из-за отсутствия дестабилизирующего влияния поперечной кромки.

На рис. 1, а показаны конструкция резцовой головки и ее конструктивные элементы. Она имеет режущие кромки, перпендикулярные к оси головки: 1 — резцовая головка; 2 — заготовка; 3 — резец, расположенный у периферии резцовой головки (внешний резец); 4 — резец, расположенный у оси резцовой головки (внутренний резец); 5 срезаемая внешним резцом стружка (а — толщина среза); 6 — срезаемая внутренним резцом стружка; 7 — грязевая канавка (условно совмещена на чертеже с осью резцовой головки); 8 — стружечная канавка у внешнего резца; 9 — стружечная канавка у внутреннего резца; 10 — вращательное движение резцовой головки при точении отверстия; s_0 — осевая подача; D — диаметр отверстия; d — диаметр стержня, остающийся вдоль оси заготовки, периодически обламывающегося и уносящегося струж-

Рис. 1. Конструкция резцовой головки (*a*); вид на резцовую головку по стрелке $B(\delta)$ и идентификация геометрии резцов в плоскости, перпендикулярной к оси резцовой головки (*в* и *г*)

кой; $l_{\rm K}$ — длина корпуса резцовой головки; $l_{\rm p}$ — вылет (высота) резца; $l_{\rm X}$ — длина хвостовика; L — длина резцовой головки.


По стрелке B на рис. 1, δ показан вид на резцовую головку с исполнением корпуса с грязевыми канавками на цилиндрической направляющей части и снимаемой стружкой: d/2 — размер подточки внутреннего резца; b — ширина грязевой канавки.

На рис. 1, ϵ показаны: продольное сечение $A\!-\!A$ резцовой головки плоскостью, нормальной к главной режущей кромке резца и срезаемая стружка; конструкция и геометрия внешнего резца; $b_{\rm p}$ — ширина задней поверхности; α — задний угол; α_1 — угол на корпусе резца, γ — передний угол резца.

На рис. 1, z показано сечение $\mathit{E-E}$ по резцам резцовой головки: α_6 — задние боковые углы на резцах; D_Γ — диаметр резцовой головки.

На рис. 2 по стрелке Γ показан вид на резцовую головку (с режущими кромками, перпендикуляр-

24 ISSN 0869-7566

Рис. 2. Вид на резцовую головку по стрелке Γ

ными к оси головки) сбоку: 1 — корпус резцовой головки; 3 — внешний резец резцовой головки; 4 — внутренний резец резцовой головки; 8 — стружечная канавка у внешнего резца резцовой головки; $l_{\rm p}$ — высота (вылет) резца; $b_{\rm p}$ — ширина задней поверхности; α — задние углы резцов; $\alpha_{\rm q}$ — дополнительные углы заточки резцов у задней поверхности; γ — передние углы резцов; $D_{\rm r}$ — диаметр резцовой головки.

Основные особенности способа точения отверстий и резцовой головки: при точении отверстий применяется схема точения отверстий с невращающейся резцовой головкой и ее продольной подачей и вращающейся заготовке; режущая часть головки образована резцами, расположенными асимметрично (в шахматном порядке) относительно оси резцовой головки; наименьшее число резцов равно двум; на внутреннем резце на приосевой части выполнен уступ (ломающий уклон); в качестве выглаживающей части применяют наружную поверхность корпуса или специальные твердосплавные направляющие; переднее внутреннее ребро внутреннего резца совпадает с осью резцовой головки или наклонено к оси на величину переднего угла.

Предлагаемая резцовая головка позволит повысить эффективность и качество обработки отверстий по сравнению с традиционным сверле-

нием спиральным сверлом в результате условий резания, присущих точению, значительно более легких, чем при сверлении в условиях неблагоприятной геометрии (выдавливание, смятие и скобление) поперечной кромкой материала вместо резания, повышенных температур, сил резания и износа инструмента. Резцовая головка имеет повышенную стойкость, обеспечивает возможность обработки отверстий с плоским дном, увеличивает производительность и качество обрабатываемой поверхности.

Анализ конструкции резцовой головки показал, что применение твердосплавных пластин с креплением их к корпусу винтами упростит конструкцию и технологию изготовления.

Разработана конструкция сборной резцовой головки с креплением резцов, изготовленных из твердого сплава, к корпусу винтами, что даст возможность замены в результате износа и увеличит ресурс путем переточки и увеличит срок эксплуатации инструмента (рис. 3, *a*) [16].

На рис. 3, a показаны: 1 — корпус сборной резцовой головки; 2 — наружная твердосплавная пластина; 3 — внутренняя твердосплавная пластина; 4 — винт; 5 — хвостовик сборной резцовой головки; 6 — грязевая канавка; 7 — стружечная канавка; 8 — вращательное движение сборной резцовой головки; 9 — осевое перемещение сборной резцовой головки; L — длина сборной резцовой головки; $L_{\rm x}$ — длина хвостовика; $L_{\rm k}$ — длина корпуса сборной резцовой головки; $L_{\scriptscriptstyle \rm B}$ — длина вылета твердосплавной пластины; b_{Π} — ширина твердосплавной пластины; S_{Π} — толщина твердосплавной пластины; b_{κ} — ширина грязевой канавки на корпусе сборной резцовой головки; f — фаска на грязевой канавке; D_{Γ} — диаметр резцовой головки; вид А — вид для идентификации расположения твердосплавных пластин.

В сборной резцовой головке твердосплавные пластины расположены следующим образом: одна — к центру, другая — к периферии. Из-за этого крутящие моменты на левой и правой частях разной величины, что приводит к вибрации и неуравновешенности, а, следовательно, к снижению качества и точности обработки.

Для уравновешивания крутящих моментов разработана сборная резцовая головка с асимметрично расположенными твердосплавными пластина-

СТИН. 2018. № 8

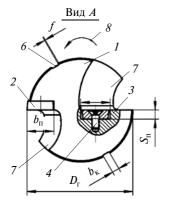
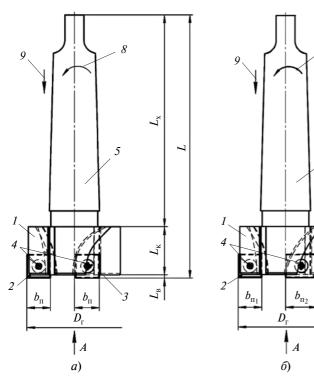



Рис. 3. Сборная резцовая головка (a) и сборная резцовая головка с твердосплавными пластинами разной ширины (δ)

ми разной ширины, закрепленными винтами на корпусе (рис. 3, δ), где $b_{\Pi 1}$ — ширина наружной твердосплавной пластины; $b_{\Pi 2}$ — ширина внутренней твердосплавной пластины.

Режущая часть выполнена в виде твердосплавных пластин разной ширины, что способствует повышению стойкости и качества обработки отверстий при условии равновесия крутящих торцовых моментов в результате свободного торцового точения в условиях резания, присущих точению, значительно более легких, чем при сверлении в условиях неблагоприятной геометрии, скобления и выдавливания поперечной кромкой материала вместо резания, повышенных температур, сил резания и

износа инструмента, а также из-за удобства и простоты в изготовлении и эксплуатации нового инструмента.

При работе резцовой головки каждый резец снимает слой стружки следующим образом: при двух резцах внутренний резец образует цилиндр отверстия примерно 0,5 диаметра отверстия, в зависимости от принятых соотношений ширины резцов. Внешний резец срезает стружку на кольцевом участке обрабатываемого отверстия, остающемся после прохода внутреннего резца. Отсутствие поперечной кромки значительно улучшает условия резания и повышает качество обработки. Направляющие элементы на корпусе головки позволяют улучшить качество поверхности отверстия. Большая жесткость инструмента и выглаживание повышают точность и качество поверхности отверстия.

Материал резцовой сборной головки: корпуса — сталь 45 (ГОСТ 4543—2016), твердосплавных пластин — твердый сплав Т30К4 (ГОСТ 3882—74).

Эффективность и качество обработки отверстий обеспечивают путем свободного торцового точения при условии равновесия крутящих торцовых моментов наружной и внутренней пластинок: $M_{\text{кр.т.н}} = M_{\text{кр.т.в}}$.

Сборная резцовая головка с асимметрично расположенными твердосплавными пластинами разной ширины повышает стойкость, эффективность и качество обработки отверстий при условии равновесия крутящих торцовых моментов и условий резания, присущих точению, значительно более легких, чем при сверлении в условиях неблагоприятной геометрии, скобления и выдавливания поперечной кромкой материала вместо резания, повышенных температур, сил резания и износа инструмента.

Список литературы

- 1. **Грановский Г. И., Грановский В. Г.** Резание металлов. М.: Высш. шк., 1985. 304 с.
- 2. **Металлорежущие** инструменты / Г. И. Сахаров, О. В. Арбузов, Ю. Л. Боровой и др. М.: Машиностроение, 1989. 328 с.
- 3. **Sandvik** Coromant Becomes Premium Partner of DMG Mori // Manufacturing engineering. Soc manufacturing engineers. 2017. Vol. 158. Is. 2. P. 25—25.
- 4. **Sandvik** Coromant becomes new ISTMA global partner // Advanced Materials & Processes. ASM Int. 2008. Vol. 166. Is. 8. P. 19—19.
- 5. **Artamonov V. V., Bykov A. O., Bykov P. O., Artamonov V. P.** Measurement of the tap density of metal powders // Powder met-

26 ISSN 0869-7566

allurgy and metal ceramics. -2013. - Vol. 52. - Is. 3-4. - P. 237-239.

- 6. **Cep R., Janasek A., Sliva A., Neslusan M., Binder M.** Experimental tool life tests of indexable inserts for stainless steel machining// Tehnicki vjesnik-technical gazette. 2013. Vol. 20. Is. 6. P. 933—940.
- 7. Filippov A. V., Shamarin N. N., Podgornykh O. A., Chazov P. A. Cross section of the cut layer in oblique single-edge boring by a radial cutter // Russian Engineering Research. 2017. Vol. 37. Is. 4. P. 367—371.
- 8. **Hole machining** based on using an incisive built-up reamer/ N. Dudak, A. Taskarina, A. Kasenov, G. Itybaeva et al. // International Journal of Precision Engineering and Manufacturing. 2017. Vol. 18. Is. 10. P. 1425—1432.
- 9. **A new pass-through** lathe cutter / N. S. Dudak, G. T. Itybaeva, Z. K. Musina et al. // Russian Engineering Research. 2014. Vol. 34. Is. 11. P. 705—707.
- 10. **Borovskii V. G., Neginskii E. A., Ott O. S., Maslov A. R.** Drilling of Hard Rock by Means of Polycrystalline Diamond Inserts // Russian Engineering Research. 2018. Vol. 38. Issue 1. P. 33—35.

- 11. **Processing** of holes with a reamer-broach / N. S. Dudak, A. Z. Kasenov, Z. K. Musina et al. // Life Science Journal. 2014. Vol. 11. Is. 10. P. 282—288.
- 12. **Increase** of precision of casting blocks by applying acoustical oscillations in gas-impulsive moulding / V. G. Berezyuk, S. B. Kuzembayev, K. T. Sherov et al. // Journal of Vibroengineering. 2015. Vol. 17. Is. 5. P. 2178—2186.
- 13. Инновационный патент Республики Казахстан № 20211 на изобретение. Способ и инструмент для изготовления отверстий в сплошном материале / Дудак Н. С., Тастенов Е. К.; опубл. 17.11.2008, Бюл. № 11. 15 с.
- 14. Инновационный патент Республики Казахстан № 22032 на изобретение. Новый способ и резцовая головка для получения отверстий точением / Дудак Н. С.; опубл. 15.12.2009, Бюл. № 12. 14 с.
- 15. **Дудак Н. С., Янюшкин А. С.** Способ и резцовая головка для высокопроизводительного торцового точения отверстий// Системы. Методы. Технологии. 2011. № 9. С. 78—86.
- 16. **Обработка** отверстий сборной резцовой головкой / Н. С. Дудак, Р. Б. Муканов, Т. М. Мендебаев и др. // Вестник государственного университета имени Шакарима города Семей. 2017. Т. 1. № 2 (78). С. 57—61.

УДК 621.785.53.81.01

Влияние количества карбидов и легирующих элементов на межкристаллитную коррозию в пластинах из режущей керамики

к.т.н. В. Н. Пучкин 1 , д.т.н. А. А. Рыжкин 2 , к.т.н. И. А. Туркин 2 , д.т.н. В. А. Кохановский 2 , И. Д. Стороженко 3 , Т. В. Кащеева 4

// 1 Армавирский механико-технологический институт; 2 Донской государственный технический университет;

³ Кубанский государственный технологический университет; ⁴ ОАО «ЭЛТЕЗА».

E-mail: ¹puchkin.2019@list.ru, ³Vanyatka_2007@mail.ru

Аннотация. Выявлена причина межкристаллитной коррозии (МК) пластин из режущей керамики (РК) — обеднение хромом периферийной зоны зерен вследствие выделения хромистых карбидов на их границах, с учетом одновременного влияния напряжений, возникающих при быстром охлаждении пластин с высоких температур. Особенно это проявляется при обработке труднообрабатываемых сталей (ТОС) 12Х18Н10Т, 40Х13, 14Х17Н2 и др., инструментом, оснащенным пластинами модифицированной РК ВОК-60М. На основании этих и других результатов исследований причина МК пластин из РК — напряжения, возникающие в поверхностных слоях зерен в результате выделения карбидных или нитридных фаз. Нагрев пластин из РК при температуре 650—800 °C снимает эти напряжения и восстанавливает их стойкость против МК.

Также установлено, что хромомарганцевые пластины из PK менее склонны к межкристаллитной коррозии, чем хромомарганцевоникелевые, а последние — в меньшей степени, чем хромоникелевая PK. Преимущество хромомарганцевоникелевых пластин из PK особенно заметно при сравнительно небольшой продолжительности обработки TOC 12X18H10T, 14X17H2, 40X13 и др. с высокими режимами резания и температурой $\theta = 600 \div 650$ °C в зоне контакта заготовка—инструмент.

Высказано предположение о природе МК модифицированной РК ВОК-60М, которое основывается на роли кинетического фактора при относительно низких температурах отпуска, при котором выделяется метастабильный карбид, хотя это приводит не к максимальному, а только к относительному изменению свободной энергии системы. В РК таким карбидом может быть сильно обогащенный титаном карбид хрома (Cr, Ti)₂₃C₆. С повышением температуры отпуска выделяющийся карбид все больше приближается к стабильному составу $Cr_{23}C_6$. Длительная выдержка при температуре отпуска также способствует установлению термодинамического равновесия, т. е. постепенному обогащению карбида хромом до стабильного состава Cr₂₃C₆, причем необходимое для этого время тем меньше, чем выше температура отпуска. Очевидно, что варьирование состава карбида, выделяющегося по границам зерен в РК ВОК-60М, с изменением температуры отпуска и продолжительности выдержки при ней будет изменять и кинетику электрохимического растворения системы, состоящей из карбида и контактирующего с ним твердого раствора.

Исследованиями установлено, что вакуумное спекание и отжиг заметно повышает жаропрочность. У РК это объясняется не только удалением легкоплавких примесей, но и тем, что меньшее количество алюминия и других легирующих элемен-

СТИН. 2018. № 8