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RNA-Seq explores the functional role of the fibroblast growth 
factor 10 gene in bovine adipocytes differentiation
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Imbay Seisembay2, Akhmetbekov Nurbolat2, Shaikenova Kymbat Hamitovna2,  
Omarova Karlygash Mirambekovna2, Makhanbetova Aizhan Bekbolatovna2,  
Tlegen Garipovich Amangaliyev5, Ateikhan Bolatbek6, Titanov Zhanat Yeginbaevich6,  
Shakoor Ahmad7, Zan Linsen1, and Begenova Ainagul Baibolsynovna1,*

Objective: The present study was executed to explore the molecular mechanism of fibroblast 
growth factor 10 (FGF10) gene in bovine adipogenesis. 
Methods: The bovine FGF10 gene was overexpressed through Ad-FGF10 or inhibited 
through siFGF10 and their negative control (NC) in bovine adipocytes, and the multiplicity 
of infection, transfection efficiency, interference efficiency were evaluated through quantitative 
real-time polymerase chain reaction, western blotting and fluorescence microscopy. The 
lipid droplets, triglycerides (TG) content and the expression levels of adipogenic marker 
genes were measured during preadipocytes differentiation. The differentially expressed 
genes were explored through deep RNA sequencing.  
Results: The highest mRNA level was found in omasum, subcutaneous fat, and intramuscular 
fat. Moreover, the highest mRNA level was found in adipocytes at day 4 of differentiation. 
The results of red-oil o staining showed that overexpression (Ad-FGF10) of the FGF10 
gene significantly (p<0.05) reduced the lipid droplets and TG content, and their down-
regulation (siFGF10) increased the measurement of lipid droplets and TG in differentiated 
bovine adipocytes. Furthermore, the overexpression of the FGF10 gene down regulated 
the mRNA levels of adipogenic marker genes such as CCAAT enhancer binding protein 
alpha (C/EBPα), fatty acid binding protein (FABP4), peroxisome proliferator-activated 
receptor-γ (PPARγ), lipoprotein lipase (LPL), and Fas cell surface death receptor (FAS), 
similarly, down-regulation of the FGF10 gene enriched the mRNA levels of C/EBPα, PPARγ, 
FABP4, and LPL genes (p<0.01). Additionally, the protein levels of PPARγ and FABP4 were 
reduced (p<0.05) in adipocytes infected with Ad-FGF10 gene and enriched in adipocytes 
transfected with siFGF10. Moreover, a total of 1,774 differentially expressed genes (DEGs) 
including 157 up regulated and 1,617 down regulated genes were explored in adipocytes 
infected with Ad-FGF10 or Ad-NC through deep RNA-sequencing. The top Kyoto 
encyclopedia of genes and genomes pathways regulated through DEGs were the PPAR 
signaling pathway, cell cycle, base excision repair, DNA replication, apoptosis, and regulation 
of lipolysis in adipocytes. 
Conclusion: Therefore, we can conclude that the FGF10 gene is a negative regulator of 
bovine adipogenesis and could be used as a candidate gene in marker-assisted selection.
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INTRODUCTION

Qinchuan beef cattle are a dual purpose Bos taurus endogenous Chinese breed. It is famous 
for its quick growth, environmental adaptability, large body frame, and genetic stability. 
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However, its worth is severely reduced, when compared with 
the marbling characteristics of exotic beef breeds [1-7]. In 
livestock species, the four adipose tissue sites are intramus-
cular (IM), intermuscular, visceral, and subcutaneous. The 
selective enhancement of IM deposition of adipose tissue 
without affecting other fat depots is a difficult task for the beef 
industry. Hence, the exploitation of the underlying mechanism 
of adipogenesis will improve meat quality traits in livestock 
species [8]. Importantly, the IM fat also known as marbling, 
is an essential meat sensory characteristic [9,10]. 
 Adipogenesis is the evolution of preadipcytes into mature 
adipocytes through a multifarious process of terminal differ-
entiation from a multi-potent adipose derived stem cells. The 
preadipocytes are lifelong present in the body and are capable 
of specification and differentiation. There are various factors 
involved in differentiation and maturation of preadipocytes 
which includes proteins, transcription factors, microRNAs, 
and epigenetic factors. The exploration of the underlying 
mechanism of the adipogenesis and lipogenesis is an area of 
interest for the understanding of the adipocytes role in car-
diovascular disease, regenerative medicine, and other obesity 
related syndromes [11].
 Fibroblast growth factors (FGFs) are signaling molecules 
which perform different vital roles at the cellular level. The 
family of FGF contains 22 related members with diverse 
roles in metabolism, neuronal activities, and development. 
The FGF10 gene is one of its members which perform a 
key role in adipose tissue metabolism and development. 
The FGF10 gene regulate adipogenesis through CCAAT 
Enhancer binding protein beta (CEBPβ) via autocrine/
paracrine mechanism [12]. The FGF10 gene mediates pro-
liferation of preadipocyte through MAPK pathway, and 
phosphorylation of p130 gene through cyclin D2 dependent 
Ras- MAPK pathway. Furthermore, the FGF10 gene in-
duces the transcription of retinoblastoma protein (pRb) 
gene which binds with CEBPα and thus stimulates adipo-
genesis through Ras-MAPK pathway [13]. Previously, the 
FGF10 gene expression was down-regulated in adipocytes 
which inhibited the expression of CEBPβ and subsequently 
differentiation of adipocytes [12]. Adipogenesis, being a 
complex biochemical process, involves differentiation of 
preadipocytes whereas proliferation and maturation of adi-
pocytes. Preadipocytes, which originate from the existent 
group of adipocytes undergoes the process of development 
in response to suitable stimuli [14]. Therefore, it is essential 
to better understand the molecular basis of adipogenesis. 
Previously, we explored the association of genetic poly-
morphism of FGF10 gene promoter with meat quality 
characteristics in Qinchuan beef cattle [15]. However, the 
in-depth molecular mechanism of FGF10 gene in bovine 
adipocytes still needs to be explored. Hence, the present 
study was executed to exploit the functional role of FGF10 

gene in bovine adipogenesis. 

MATERIALS AND METHODS

Ethical statement
All animal experiments took place at “National Beef Cattle 
Improvement Research Center, Northwest A&F University, 
Yangling, China. The procedures regarding animal handling 
were carried our as per guidance and approval of the animal 
care and ethical committee of the Northwest Agriculture 
and Forestry University, Yangling China vide notification 
No.NWAFU/AST/69.
 
Collection and preservation of test samples
The tissue samples of healthy newborn Qinchuan beef cattle 
were collected from the National Beef Cattle Improvement 
Research Center (NBCC) of the Northwest A&F University, 
China. After animals were humanly euthanized, the samples 
were aseptically collected from thirteen tissues including 
omasum, subcutaneous fat, IM fat, lung, rumen, abomasum, 
reticulum, spleen, small intestine, kidney, heart, liver, and 
muscle as described previously [16,17]. The samples were 
cryopreserved at –80°C in refrigerator for subsequent exper-
iments.

Isolation of preadipocyte cells
The adipose tissue was aseptically collected from the longis-
simus dorsi muscle area. The tissue was first washed with 
10% penicillin and streptomycin-phosphate-buffered saline 
(PBS) (Invitrogen, Carlsbad, CA, USA) solution. In the cell 
culture room, the adipose tissue was detached from the 
blood vessels and connective tissues with the help of sterile 
forceps under stereo dissecting microscope. The adipose tis-
sues was digested with collagenase I enzyme-0.25% (Sigma, 
Shanghai, China) at 37°C for I hour, and then neutralized 
with 10% fetal bovine serum (FBS). The mixture was first 
filtered through 100 μm and then with 40 μm strainers, cen-
trifuged for 10 minutes at 1,500×g. The filtrate was pelleted 
and washed with medium DMEM/F12 containing 10% FBS 
(Gibco, Grand Island, NY, USA), seeded in collagen coated 
60 mm plates, and incubated for one hour at 37°C in 5% 
CO2.The medium was aspirated, cells were washed with PBS 
to remove the dead cells, and fresh medium was added to 
the cells.

Vector construction and determination of the best 
multiplicity of infection 
The pAdeno-EF1A(S)-mNeonGreen-CMV-FGF10-3FLAG 
adenovirus vector were synthesized through Shanghai Heyuan 
Biotechnology Co., Ltd. and was used for the overexpression 
of FGF10 gene (Figure 1). The optimal multiplicity of infec-
tion (MOI) value and overexpression efficacy of the virus 
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were determined. The isolated primary preadipocytes were 
inoculated in a 12-well plate, and the MOI value was calcu-
lated according to the virus titer and cell number. When the 
cell number reached 80% to 90% confluence, the preadipo-
cytes were infected with Ad-FGF10 and negative control 
(NC) at different gradient MOI values (5, 10, 25, 35, 50, 65), 
the cell morphology was observed after 48h post infection, 
and the most suitable MOI value was determined based 
green fluorescence and cell morphology characteristics. 

Overexpression efficiency assay
The bovine preadipocytes were passage into the 6-well plate 
and infected drop wise with Ad-FGF10 and Ad-CMV-NC 
viruses at 80% to 90% confluence of the cells according to 
the optimal MOI value. After 24 hours after infection, the 
culture medium was changed, then 48 hours post infection, 
the cells were collected to extract the total RNA and subject-
ed to reverse transcription for construction of cDNA. The 
relative mRNA level of the FGF10 gene was quantified in 
both overexpression and control groups at both mRNA and 
protein levels. The list of the primers is available in Supple-
mentary Table S1. 

Determination of siRNA transfection and interference 
efficiency determination
The detection of transfection efficiency was performed ac-
cording to the fluorescently labeled siRNA (FAM-siRNA) 
according to the instructions of lipofectamin 3,000 trans-
fection reagent. Bovine preadipocytes were cultured in 6 
well plates, and when they grew to 70% to 90% confluence, 
cells were starved for 2 h with serum-free medium, and 

3.75 μL lipofectamin 3000 (Invitrogen, USA). The FAM-siRNA 
oligos and transfection reagent were mixed in medium 
(Opti-MEM; Gibco, USA) separately, the mixtures were 
left stand for 10 minutes at room temperature. Both mix-
tures were combined, mixed through vortex, and again left 
stand for 15 minutes at RT (room temperature). The mix-
ture of FAM-siRNA and transfection reagent poured drop 
wise into the cells and incubated for 24 hours in 5% CO2 at 
37°C. The cell morphology and fluorescence were checked 
under a fluorescence microscope in a dark room at 24 hours 
of post infection.

Induced differentiation of bovine preadipocytes and 
red oil o staining 
The adipocytes were infected drop wise with Ad-FGF10 or 
siFGF10 and their NCs at 80% to 90% confluence of the cells 
according to the optimal MOI value, at density of 1.2×105 
cells with transfection reagent lipofectamine Lipo-3000 (In-
vitrogen, USA). The cells were induced differentiated with 
first differentiation media including 1 μM dexamethasone, 
0.5 mM hydro cortisol, 0. 5 mmol/L of 3. isobut-1-methylx-
anthine (IBMX), and 167 nM insulin at 24 hours of post 
infection [18]. At 2 days post-infection, the culture medium 
was switched to the second differentiation medium including 
DMEM/F-12, 10% FBS, and 5 μg/mL insulin. The adipo-
cytes were first washed 2 to 3 times with PBS, and then 4% 
of paraformaldehyde was added for 30 min for fixation of 
the cells. First, 1 mL oil red O staining solution was added 
dip wise to the culture plate and incubated 30 minutes under 
dark at room temperature. The oil red O staining solution 
was then aspirated from the culture plate which was washed 

Figure 1. Adino-virus packaging of FGF10 gene. (A) The adenovirus vector represent the insertion site of the FGF10 gene. (B) The adenovirus vec-
tor with the inserted FGF10 gene. FGF10, fibroblast growth factor 10.
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2 to 3 times with PBS and the cells observed under an in-
verted phase-contrast microscope. The photographs were 
captured, and the lipid droplets were measured with ImageJ 
software.

Extraction of total RNA, construction of cDNA, and 
qRT-PCR 
The total RNA was extracted from the adipocytes through 
TRIZOL method (Takara, Beijing, China). The concentra-
tion and quality of the extracted RNA were assessed through 
optical density (OD) of the 260, its ratio 260/280 using Nano-
drop TM (TECAN), and 1% agarose gel. The RNA was 
reverse transcribed into cDNA through Prime-Script RT re-
agent kit (Takara, China). The quantitative polymerase chain 
reaction (qPCR) was performed through SYBR- Premix ExTaq 
II kit (Takara, China). The β actin and GAPDH were used as 
house-keeping genes and the relative mRNA level of the tar-
get genes were measured through 2−ΔΔCt method. 

Preparation of total RNA for sequencing
The preadipocytes were cultured in 6-well plate and infected 
with Ad-FGF10 and Ad-NC at 70% to 80% confluence of 
the cells. On day 04 of induced differentiation, the total RNA 
was collected by Trizol method (Invitrogen, Carlsbad, CA, 
USA), and its quality was analyzed with Bioanalyzer, Agi-
lent-2100 (Agilent Technologies, Palo-Alto, CA, USA) and 
with gel electrophoresis. The Oligo-dT beads were mixed 
with total RNA to enrich the mRNA and short fragments 
were made with fragmentation buffer, and finally a cDNA 
library was constructed with random primers. The second 
strand cDNA was generated with polymerase-I, RNase H, 
buffers, and dNTPs. The fragments were purified with Qia-
Quick PCR extraction kit (Qiagen, Shanghai, China), and the 
poly-A was paired-end into Illumina sequencing adapters. The 
end products were gel purified from the agarose gel through 
electrophoresis, then amplified with PCR, and sequenced 
through Illumina2500 via Gene Denovo Biotechnology Co. 
(Guangzhou, China).

Bioinformatics analysis
Clean reads filtration: The raw data of the sequencing reads 
including low quality base pairs and adapters (>10% of the 
unknown base pairs, and more than fifty percent low quality 
base pairs with q-value of more than 20) were excluded using 
a computer software fastp-v 0.18 [19]. 
 Alignment of reads with rRNA (Ribosome RNA): The align-
ment tool Bowtie-2 software were used for mapping the 
reads with rRNA [20]. The clean reads of the data were aligned 
with reference genome through “rna-strandness RF” through 
HISAT2. 2.4 software [21].
 Gene abundance quantification: The fragment per kilobase 
of transcript per million mapped reads (FPKM) were mea-

sured through String-Tie software [22] using following 
formula. 
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Statistical analysis
The computer software SAS.8 (SAS Institute, Cary, NC, USA) 
was used for the analysis of variance, and Graph-Pad Prism-6 
(GraphPad, San Diego, CA, USA) were used for the graph 
designing and statistical variation. The “p<0.05” were con-
sidered as statistically significant.
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RESULTS

Differentiation efficiency of preadipocytes and 
expression pattern of FGF10 gene
First, we validated the differentiation efficiency of the adipo-
cyte cells. The lipid droplets counts were significantly (p< 
0.05) increased in cells during differentiation from day 1 to 
day 8 (Figure 2A-2E). Moreover, a similar trend was observed 
in the triglycerides (TG) content of adipocytes during bovine 
adipocyte differentiation (1F). To illuminate the function of 
bovine FGF10 gene in adipogenesis, we examined the ex-
pression pattern of FGF10 gene through qRT-PCR analysis. 
The mRNA expression of FGF10 gene in omasum, subcuta-
neous fat and IM fat was significantly enriched compared 
with other tissues (p<0.05) as shown in figure IG. Further-
more, significantly (p<0.05) highest expression of FGF10 
gene was found in day 4 of induced differentiation in bovine 
preadipocytes, however the expression level declined from 
mid to late differentiation on day 8 (Figure 2H). These re-
sults revealed that FGF10 gene possibly plays a vital role in 
adipogenesis.

Determination of optimal multiplicity of infection of 
Ad-CMV-FGF10 virus, and overexpression and 
inhibition efficiencies 
The cells were cultured in 12-wells plates and infected with 
either Ad-FGF10 or Ad-CMV-NC in different proportions 
at MOI values of 5, 10, 25, 35, 50, 65 at 80% to 90% conflu-
ence of the cells. The MOI value was calculated according to 
the virus titer and cell numbers. After 48 hours of infection, 
the cell morphology was observed under fluorescence mi-
croscope. Interesting, the MOI values of Ad-FGF10 and Ad-

CMV-NC were 25 and 5 respectively, the cells had a good 
growth state, and no obvious lesions were found (Figure 2A-
2D). At the same time, after 48h, the total RNA and total 
protein of the cells were collected, and the overexpression effi-
ciency of FGF10 was detected at the mRNA and protein 
levels, respectively. Compared with the control group, the 
expression level of FGF10 gene mRNA increased by more 
than 2,800 times (Figure 2E); and the FGF10 protein expres-
sion level increased by 17 times compared with the NC group 
(Figure 2F). The results indicated that the adenovirus suc-
cessfully mediated the overexpression of FGF10 gene in 
bovine preadipocytes, effectively improved the overexpres-
sion efficiency of FGF10, and could be used in downstream 
experiments. The interference efficiencies of the three siR-
NAs including si-622, si-348, si-142 and siNC (Figure 2G; 
Supplementary Table S1) were evaluated and the best one 
was selected for downstream application (2H). Briefly, after 
48 hours of adipocytes transfection, the total RNA were 
extracted from the cells and cDNA library were constructed. 
The qRT-PCR was performed for the detection of the in-
terference efficiency of the selected siRNA, using the β-actin 
as an internal reference gene. The qRT-PCR analysis shows 
that, si-622 interferes 40% expression of FGF10 gene, si-
348 67%, and si-142 inhibited 55% mRNA expression of 
FGF10 gene. Therefore, si-348 exhibited highest (p<0.01) 
interference efficiency against FGF10 gene at mRNA level. 
Interestingly, the WB results shows similar results and si-
348 down-regulated the FGF10 expression by 60% at protein 
level (Figure 2H). Moreover, the cell morphology was also 
not affected, therefore, si-348 was selected and used in 
downstream experiment for the inhibition of FGF10 gene 
in bovine adipocytes. 

Figure 2. Differentiation efficiency of bovine preadipocytes and expression of FGF10 in adipogenesis. (A-F) Lipid droplets and TG contents during 
induced differentiation (day 2 to day 8) of bovine adipocytes. (G) Expression level of FGF10 in different tissues (H) Expression level of FGF10 gene 
in different days of bovine adipocytes differentiation. FGF10, fibroblast growth factor 10; TG, triglyceride. a-i p<0.05, ** p<0.01.
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Role of FGF10 gene in differentiation of adipocyte 
To further illuminate the role of FGF10 gene in adipogene-
sis, the lipid droplets were quantified in adipocytes infected 
with Ad-FGF10 and Ad-NC. The red-oil o staining results 
showed that, overexpression of FGF10 gene significantly 
(p<0.05) reduced the lipid droplets measurement in differ-
entiated bovine adipocytes (Figure 3I-3J). Similarly, down-
regulation of FGF10 gene increased (p<0.05) the measurement 
of lipid droplets in differentiated bovine adipocytes (Figure 
3K-3L). Additionally, the TG content was also reduced in 
adipocytes infected with Ad-FGF10 gene (Figure 3M), and 
the content of TG increased in the adipocytes transfected 
with siFGF10 gene as compared with siNC (Figure 3N). 
These results shows that FGF10 negatively regulates bovine 

adipogenesis. 
 To further explore the role of FGF10 gene in adipocyte 
differentiation, the FGF10 gene was over-expressed or in-
hibited during different stages of induced differentiation at 
0, 2, 4, 6, and 8 d (Figure 4A-4B). The highest mRNA ex-
pression level was found in adipocytes infected with Ad-
FGF10 gene at day-4 of differentiation. Similarly, the highest 
interference efficiency was found in day-6 of induced dif-
ferentiation. These findings suggests the role of FGF10 gene 
in the middle stage of adipogenesis. Therefore, we selected 
adipocytes infected with Ad-FGF10 gene and Ad-NC at 
day-4 of differentiation for deep RNA sequencing analysis. 
 To further explicate the role of FGF10 gene in the adipo-
genesis, we quantified the mRNA and protein of adipogenesis 

Figure 3. Optimization of MOI value and over-expression and inhibition efficiencies of adiono-FGF10 and si-FGF10 in bovine adipocytes. (A-D) De-
termination of optimum MOI value in bovine adipocytes (E) The mRNA expression of FGF10 gene in adipocytes infected with Ad-FGF10 and Ad-
NC for the evaluation of overexpression efficacy. (F) The protein expression of FGF10 gene in adipocytes infected with Ad-FGF10 and Ad-NC for 
the evaluation of overexpression efficacy. (G) The mRNA expression of FGF10 gene in adipocytes transfected with three siRNAs (si-622, si-348, si-
142 against their NC) for the analysis of Interference of FGF10 gene. (H) Protein expression of FGF10 gene in adipocytes transfected with si-
348and NC to validate the Interference of FGF10 gene. (I-J) The lipid droplets in bovine adipocytes transfected with Ad-FGF10 and Ad-NC. (K-L) 
The lipid droplets in adipocytes transfected with si-348 and NC. (M) The triglyceride content in adipocytes infected with Ad-FGF10 and Ad-NC. (N) 
The triglyceride content in bovine adipocytes infected with si-348 and NC. MOI, multiplicity of infection; FGF10, fibroblast growth factor 10; NC, 
negative control. * p<0.05, ** p<0.01.
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marker genes in differentiated adipocytes. Enrichment of 
FGF10 genes in bovine adipocytes at day 4 of differentiation, 
the expression level of peroxisome proliferator-activated 
receptor-γ (PPARγ), CCAAT enhancer binding protein al-
pha (CEBPα), Fas cell surface death receptor (FAS), lipoprotein 
lipase (LPL), and fatty acid binding protein (FABP4) genes 
were down-regulated (p<0.01) as shown in Figure 5A-5E. 
Similarly, down-regulation of the FGF10 gene enriches the 
mRNA levels of PPARγ, CEBPα, LPL, and FABP4 genes 
(p<0.01) at day 6 of adipocyte differentiation (Figure 5A-5C, 
5E). Moreover, the protein expression of PPARγ and FABP4 
were reduced (p<0.05) in adipocytes infected with Ad-FGF10 
gene at day 4 of differentiation (Figure 4F-4H). Strikingly, 
the protein expression of PPARγ and FABP4 were enriched 
(p<0.05) in adipocytes transfected with siFGF10 gene at day 

6 of differentiation (Figure 5I-5K). These findings further 
predicts the role of FGF10 gene in adipocytes differentiation. 

Quality control of the data used for RNA sequencing
Three biological replicates were made in each category of the 
differentiated adipocytes infected with Ad-FGF10 (n = 3) 
and the Ad-NC (n = 3), and a total of 6 cDNA libraries were 
constructed. The RNA quality was evaluated as represented 
with gel electrophoresis of the RNA samples and RIN (RNA 
integrity number), which ranged from 8.50 to 10 (Figure 
6A-6B). Moreover, the clean reads were aligned to the refer-
ence genome of Bos taurus (Figure 6C-6D). The unique 
mapped sequence (Unique Mapped) of each sample is over 
90%, and the total alignment rate is over 92%. It occupies a 
major share in the alignment rate and fulfill the requirements 

Figure 4. The relative mRNA level of FGF10 gene in adipocytes. (A) The mRNA level of FGF10 gene infected with Ad-FGF10 during the course of 
differentiation at D0, D4, D6, and D8. (B) The mRNA level of FGF10 gene transfected with siFGF10 during the course of differentiation at D0, D4, 
D6, and D8. FGF10, fibroblast growth factor 10. ** p<0.01.
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Figure 5. The mRNA and protein level expression of the adipognesis related genes in adipocytes transfected with Ad-FGF10, si-FGF10 and their 
respective NCs. (A-E) the mRNA expression level of CEBPα, PPARγ, FABP4, FAS and LPL genes in adipocytes transfected with Ad-FGF10, si-FGF10 
and their respective NCs. (F-J) The relative protein level of PPARγ and FABP4 in adipocytes transfected with Ad-FGF10, si-FGF10 and their respec-
tive NCs. FGF10, fibroblast growth factor 10; NC, negative control; CEBPα, CCAAT enhancer binding protein beta; PPARγ, peroxisome prolifera-
tor-activated receptor-γ; FABP4, fatty acid binding protein 4; FAS, Fas cell surface death receptor; LPL, lipoprotein lipase. * p<0.05, ** p<0.01.
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of the data volume for RNA sequence analysis (Table 1). Based 
on the alignment results of the reads mapped to the genome, 
the distribution positions were calculated in the reference 
genome, and most of the sequencing reads were compared 
to the exon region, and the matching rate was over 75% (6C-
6D). 
 Additionally, the significance of the transcriptomic analy-
sis was also confirmed through expression abundance of the 
samples (Figure 6E). The correlation between the samples of 
the two experimental groups was more than 80%, while the 
correlation between the samples within the group was over 
99%. These findings shows reliability of the data and hence 

validate the use of samples for downstream application (Fig-
ure 6F).
 Through differential analysis, a total of 1,774 significantly 
different genes were obtained, including 157 genes up regu-
lated and 1,617 genes down regulated (Figure 7A). The 
clustering of expression levels of differential genes among 
samples is shown in Figure 7B. The results show that the ex-
pression levels of the enriched genes and down regulated 
genes are different (p<0.05) in adipocytes infected with Ad-
FGF10 (n = 3) and the Ad-NC (n = 3). 
 The up regulation of FGF10 significantly (p<0.05) medi-
ated the GO terms (Figure 8A). The overexpression of the 

Figure 6. RNA samples quality and data analysis. (A-B) Gel electrophoresis and RIN values of the RNA samples extracted from adipocytes infect-
ed with Ad-FGF10 and NC. (C-D) The sequenced data validity extracted from the adipocytes infected with Ad-FGF10 and NC. (C) The clean read 
filtration of the data shown with blue after removal of the low quality base pairs and adapters. (D) The aligned clean reads were shown with vari-
ous colors and represents various regions of the genome. Red color shows inter-genic region; yellow color shows intronic region; and green color 
shows exonic region. (E) The FPKM in each sample of adipocytes infected with Ad-FGF10 and NC. (F) The heat map correlation of the two group’s 
adipocytes samples transfected with adino-FGF10 and NC. FPKM, fragments per kilobase million; FGF10, fibroblast growth factor 10; NC, nega-
tive control.
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Table 1. Comparative analysis of reference genomes

Sample Total Unmapped (%) Unique mapped (%) Multiple mapped (%) Total mapped (%)

FG_D4-1 45,832,240 7.43 90.27 2.30 92.57
FG_D4-2 50,301,870 7.48 90.30 2.23 92.52
FG_D4-3 60,085,932 7.06 90.76 2.18 92.94
NC_D4_1 45,176,872 6.16 91.84 2.01 93.84
NC_D4_2 46,538,406 6.29 91.70 2.00 93.71
NC_D4_3 48,693,182 6.17 91.83 2.00 93.83

FG, fibroblast growth; NC, negative control.
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FGF10 gene revealed three functional levels of GO terms 
comprising cellular component (CC), molecular function 
(MF), and biological process (BP). The BP was the highest 
contributor (80.08%) to the GO enrichment terms, followed 
by 13.4% (CC) and 6.7% (MF). The top twenty GO terms 
significantly enriched due to DEGs in bovine adipocytes are 
shown in figure 8B. These GO terms including cells cycle 
process, chromosomal segregation, mitotic cells cycle, nucle-
ar division, DNA replication, and DNA metabolics process.
 The top twenty significantly (Q<0.05) enriched KEGG 
pathways validated the roles of DEGs modulated by the FGF10 
gene in adipocytes (Figure 9). The KEGG A class enriched 
pathways are metabolisms (lipid, carbohydrates, amino acid, 
cofactor and vitamins, and nucleotide metabolisms) genetic 
information processes (transcription, translation, replication, 
and repair); environmental information process (signaling 
molecule and interactions, and signals transduction); cellular 
process (transport and catabolism, cellular growth and 
death, cell motility, and cellular community eukaryote); and 
organism systems (endocrine system, immune system, sen-
sory system, nervous system, digestive system, circulatory 
system, environmental adaptation, development, and aging); 
diseases (infectious diseases, tumors, metabolic and endo-
crine diseases, cardiovascular and neurodegenerative diseases). 
These pathways of the KEGG A class play significant roles in 
adipogenesis. The top twenty pathways regulated with en-
richment of FGF10 gene in bovine adipocytes includes PPAR 
signaling pathway, bases excision repairs, cells cycle, DNA 
replications, herpes simplex infections, homologous recom-
bination, apoptosis, and regulation of lipolysis in adipocytes 
(Figure 9B). Furthermore, to explore the effect of FGF10 

gene in the differential transcriptomics pattern of FGF re-
ceptors in differentiated bovine adipocytes infected with Ad-
FGF10 or Ad-NC, we extracted the transcriptomics profile 
of the selected FGF receptors from the RNA sequencing 
data (Table 2). The results showed that enrichment of FGF10 
gene in differentiated bovine adipocytes down-regulated the 
expression of FGFRL1, FGFR2, FGFR4, and FGFR3.

Validation of RNA sequencing results
To validate the sequencing results, eight DEGs including 
programmed cell death protein (PDCD1), amphiregulin 
(AREG), C5a anaphylatoxin chemotactic receptor 2 (C5AR2), 
PPARG Coactivator 1 Beta (PPARGC1B), platelet-derived 
growth factor receptor alpha (PDGFRA), Asparagine syn-
thetase (ASNS), discoidin domain receptor tyrosine kinase 2 
(DDR2), and FGF10 were randomly selected for qRT-PCR 
analysis. The findings of the qRT-PCR were in line with the 
results of RNA sequencing results (Figure 10). The expres-
sion levels of PDCD1, AREG, C5AR2, PPARGC1B were 
down regulated (p<0.05) with the enrichment of FGF10 
gene. Moreover, the expression levels of PDGFRA, ASNS, 
DDR2, and FGF10 were up-regulated with the enrichment 
of FGF10 gene in adipocytes. 

DISCUSSION

Adipogenesis, being a complex biochemical process, involves 
differentiation of preadipocytes followed by proliferation and 
maturation of adipocytes. Preadipocytes, which originate 
from the existent group of adipocytes undergoes the process 
of development in response to suitable stimuli [14]. There-

Figure 7. Quantification of DEGs in adipocytes infected with Ad-FGF10 and Ad-NC. (A) The number of differential gene expression exhibited by 
the bar graph within two categories of adipocytes infected with Ad-FGF10 and Ad-NC (B) The hierarchical cluster analysis represented with heat 
map of DEGs in two categories of adipocytes infected with Ad-FGF10 and Ad-NC (B). Blue color depicts down-regulated and red color shows 
up-regulated genes. DEGs, differentially expressed genes; FGF10, fibroblast growth factor 10; NC, negative control.
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Figure 8. The GO classification of DEGs in two categories of adipocytes infected with Ad-FGF10 and Ad-NC (A) The GO terms of the unigenes ex-
plored through transcriptomic analysis in two categories of bovine adipocytes infected with Ad-FGF10 and Ad-NC. (B) The Z score in GO category 
are shown with BP (blue), CC (green), and MF (yellow). The top twenty GO terms enriched due to DEGs in two categories of adipocytes infected 
with Ad-FGF10 and Ad-NC. GO, gene ontology; DEGs, differentially expressed genes; FGF10, fibroblast growth factor 10; NC, negative control; BP, 
biological process; CC, cellular component; MF, molecular function.
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fore, it is essential to better understand the molecular basis 
of adipogenesis. Previously, we identified polymorphism of 
FGF10 gene promoter and found its association with meat 
quality characteristics in Qinchuan beef cattle [15]. Currently, 
the mRNA expression level of FGF10 gene in 12 different 
tissues of Qinchain beef cattle showed the highest level in 
omasum, followed by subcutaneous fat, muscular fat, and 
lung tissue. Zhang et al., 2018 found the highest expression 
level of FGF10 gene in lung tissue followed by thigh and 
breast muscles [25]. Moreover, the expression changes of 
FGF10 gene during different stages of induced differentia-
tion exhibited an increasing trend from day 2 and reached 
the maximum on the 4th day of induction differentiation, 
which then decreased on the 6th and 8th days. The results 
indicated that FGF10 may play a role in the middle stage of 
bovine adipocyte differentiation. A similar trend was found 
in the mRNA expression of FGF10 in 3T3L1 cells. The ex-
pression level increased from day 0 to day 2, and then decreased 

gradually until day 6 [26]. The Matsubara et al [27] reported 
rapid decrease in expression level of FGF10 gene in early 
stage of chicken adipocyte differentiation. This variation in 
the expression of FGF10 gene during adipocyte differentia-
tion shows its function in adipocyte differentiation. Beef 
quality is mainly affected by fat deposition, which is closely 
related to adipocyte differentiation [28]. The FGFs are sig-
naling proteins with diverse functions, especially regulate 
adipogenesis [29]. To further validate the role of FGF10 on 
the differentiation of preadipocytes, overexpression and in-
terference of FGF10 were transfected into preadipocytes, 
and the adipocyte differentiation marker genes CEBPα, 
PPARγ, FABP4, FAS and LPL were detected at the mRNA 
level. The overexpression of FGF10 gene, down regulated the 
expression of CEBPα, PPARγ, FABP4, and LPL at day 4 after 
induced differentiation. After overexpressing the FGF10 
gene in bovine adipocytes, the protein expression of PPARγ 
and FABP4 decreased significantly compared with the con-

Figure 9. The KEGG pathways regulated by DEGs in two categories of adipocytes infected with Ad-FGF10 and Ad-NC. (A) Top twenty KEGG pathways 
enriched by DEGs in in two categories of adipocytes infected with Ad-FGF10 and Ad-NC. (B) The bubble chart of the KO enrichment analysis, the 
yellow color shows Q-value as <0.05 a threshold value. KEGG, Kyoto encyclopedia of genes and genomes; DEGs, differentially expressed genes; 
FGF10, fibroblast growth factor 10; NC, negative control.
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Table 2. Differential transcriptomics analysis of FGF receptors in differentiated bovine adipocytes infected with Ad-FGF10 or Ad-NC

Gene NC FGF10 log2(fc) Description

FGFRL1 6.26 1.663 –1.912085342 Fibroblast growth factor receptor like 1
FGFR2 5.08 2.533 –1.003791579 Fibroblast growth factor receptor 2
FGFR1 24.68 26.5 0.102649965 Fibroblast growth factor receptor 1
FGFR4 0.033 0.001 –5.058893689 Fibroblast growth factor receptor 4
FGFR3 0.08 0.043 –0.884522783 Fibroblast growth factor receptor 3

FGF, fibroblast growth factor; NC, negative control.
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trol group at 4th day of induced differentiation, while down 
regulation of FGF10 increased the expression of PPARγ and 
FABP4 proteins significantly at 6 days of differentiation. 
Based on the results of mRNA and protein level expressions, 
FGF10 inhibited the expression of adipocyte differentiation 
marker genes. However, Previously, overexpression of FGF10 
gene in goat subcutaneous preadipocytes, enriched the ex-
pression of adipocyte differentiation marker genes such as 
C/EBPα, LPL, ACACA, FGFR1, FGFR3, FASN, and ATGL 
[30]. The probable reason for this variation could be due to 
different cell lines or different species. 
 To further confirm the effect of FGF10 on the differentia-
tion of adipocytes, after the overexpression and interference 
of FGF10 gene, the oil red O staining method was used to 
observe and compare the morphology, and the content of 

triglyceride was determined. On the 4th day, oil red O stain-
ing showed that overexpression of FGF10 produced smaller 
lipid droplets than that of the control group. However, lipid 
droplets in the FGF10-interfering treatment group were 
larger than those in the control group on the 6th day of in-
duction of differentiation. The triglyceride content was also 
reduced in the adipocytes infected with Ad-OE-FGF10, 
while the triglyceride content of the interference FGF10 
treatment adipocytes were relatively increased compared 
with the control group. This further proves that FGF10 can 
inhibit triglyceride accumulation in bovine adipocytes. 
Therefore, we can speculate that the FGF10 gene is a nega-
tive regulator of bovine adipocytes differentiation. 
 To further validate the roles of FGF10 gene in adipocytes 
differentiation, deep RNA sequencing was performed, which 

Figure 10. The expression of selected gene analyzed through quantitative real-time polymerase chain reaction analysis. * p<0.05, ** p<0.01.
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provides a modern insight for functional genomics. A total 
of 1,774 DEGs were detected, including perilipin (PLIN1), 
acyl-CoAsynthetase long chain family member1 (ACSL1), 
FABP4, PPARGC1B in adipocytes infected with Ad-FGF10 
or Ad-NC. The GO function analysis gives the GO function 
classification annotation of the gene, and it also gives the GO 
function significance enrichment of the gene. The GO enrich-
ment is mainly divided into three levels of functions, namely 
molecular function (molecular function, GO-MF), cellular 
components (cellular component, GO-CC), and biological 
process (biological process, GO-BP). Pathway significant 
enrichment explores the most important biochemical meta-
bolic pathways and signal transduction pathways involved 
in differential genes. In organisms, different genes coordi-
nate with each other to exercise their biological function. 
Pathway-based analysis helps to further understand the in-
teraction of genes. The results of GO enrichment analysis 
and KEGG pathway analysis showed that differential genes 
were involved in the regulation of a wide range of biological 
processes (such as metabolism, regulation of biological pro-
cesses, and cell proliferation), and were enriched in the 
PPAR signaling pathway related to lipid differentiation, adi-
pocyte regulation, fatty acid degradation and other pathways. 
These results indicated that FGF10 gene plays a certain regu-
latory role in adipocyte differentiation. The PPARGC1B is a 
transcriptional co-stimulator of nuclear receptor PPARγ, 
which has multiple nuclear hormone receptor binding sites. 
PPARGC1B plays a very important role in biochemical path-
ways such as mitochondrial proliferation and respiration, 
adipogenesis and adipocyte differentiation, and hepatic gluco-
neogenesis [31]. To function, PPARGC1B must first interact 
with DNA-binding transcription factors and then act on 
downstream targets. Many protein domains of PPARGC1B 
are used to interact with transcription factors. The PPARGCIB 
is relatively inactive, and it can affect transcription only when 
it combines with PPARγ or nuclear respiratory factor 1 (NRF-1) 
[32]. The ACSL1 is a member of the ACSLs family, and is a 
key regulator of adipogenesis [33]. FABP4 promotes adipo-
cyte differentiation and reduce lipolysis [34]. The PLIN1 
mobilize lipids in adipose tissue and is a key regulator of li-
polysis and lipid storage in adipocyte [35]. Furthermore, the 
present study found that after overexpressing the FGF10 
gene, the expression levels of the above lipid differentiation-
related genes were all down-regulated during the process of 
adipocyte differentiation. Interestingly, overexpression of 
FGF10 gene down-regulated the transcription of FGF re-
ceptors such as FGFRL1, FGFR2, FGFR4, and FGFR3 in 
differentiated bovine adipocytes. Previous studies show 
that FGFs have specific binding affinity with tyrosine kinase 
receptors known as FGF receptors (1-4). FGFs binding with 
FGFRs causes receptors dimerization and tyrosine phosphor-
ylation, leading to activation of various signaling pathways 

[36], especially in adipogenesis [37]. FGF10 regulates adi-
pogenesis through FGF receptors in various mammalian 
species [38,39]. Therefore, based on the findings of the current 
study, we can conclude that FGF10 gene is an important 
negative regulator of adipogenesis and provides a founda-
tion for the improvement of beef cattle molecular breeding 
program. 
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Supplementary Table S1. The sequence of bovine siFGF10 and negative control siRNA 


Si name  Sequence 


Si1 FGF10‐bos‐142 
5ʹ‐3ʹ  GCCACCAACUCCUCUUCUUTT 


5ʹ‐3ʹ  AAGAAGAGGAGUUGGUGGCTT 


Si2 FGF10‐bos‐348 
5ʹ‐3ʹ  GGAGAUAACUUCAGUGGAATT 


5ʹ‐3ʹ  UUCCACUGAAGUUAUCUCCTT 


Si3 FGF10‐bos‐622 
5ʹ‐3ʹ  CCGAUGGUGGUACACUCAUTT 


5ʹ‐3ʹ  AUGAGUGUACCACCAUCGGTT 


NC 
5ʹ‐3ʹ  UUCUCCGAACGUGUCACGUTT 


5ʹ‐3ʹ  ACGUGACACGUUCGGAGAATT 


 





