
МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования «Омский государственный технический университет»

ТРАНСПОРТ И ХРАНЕНИЕ УГЛЕВОДОРОДОВ

Тезисы докладов
II Международной научно-технической конференции молодых учёных

(Омск, 7 апреля 2021 года)

Научное текстовое электронное издание локального распространения

Омск Издательство ОмГТУ 2021

Сведения об издании: <u>1</u>, <u>2</u> © ОмГТУ, 2021 ISBN 978-5-8149-3236-5

Редакционная коллегия:

Ю. А. Краус, к.т.н., отв. редактор;
М. О. Мызников, к.т.н.;
А. В. Грузин, к.т.н.;
Н. В. Чухарева, к.х.н.;
А. Х. Мустафин, к.т.н.;
М. И. Гильдебрандт

Транспорт и хранение углеводородов: тез. докл. II Междунар. науч.-техн. конф. молодых учёных (Омск, 7 апр. 2021 г.) / Минобрнауки России, Ом. гос. техн. ун-т; редкол.: Ю. А. Краус (отв. ред.) [и др.]. — Омск: Изд-во ОмГТУ, 2021. — 1 CD-ROM (4,64 Мб). — Систем. требования: процессор с частотой 1,3 ГГц и выше; 256 Мб RAM и более; свободное место на жестком диске 300 Мб и более; Windows XP и выше; разрешение экрана 1024×768 и выше; CD/DVD-ROM дисковод; Adobe Acrobat Reader 5.0 и выше. — Загл. с титул. экрана. — ISBN 978-5-8149-3236-5.

Представлены материалы исследовательских работ молодых учёных по проблемам транспорта и хранения углеводородов по следующим направлениям: диспетчерскотехнологическое управление, товарно-транспортная работа и метрология; проектирование, строительство и эксплуатация объектов сбора, подготовки, транспортировки и хранения углеводородов; эксплуатация механо-технологического и энергетического оборудования объектов сбора, подготовки, транспорта и хранения углеводородов.

Издание предназначено для студентов направлений подготовки бакалавров, магистров, кадров высшей квалификации, занимающихся научными исследованиями в области транспорта и хранения углеводородов.

Ответственность за содержание материалов несут авторы Издается в авторской редакции

Электронный оригинал-макет издания подготовлен на кафедре НГДСиМ ОмГТУ

Дизайн этикетки Ю. А. Крауса

Подписано к использованию 05.04.21. Объем 4,64 Мб.

II Международная научно-техническая конференция для молодых учёных **«Транспорт и хранение углеводородов»** 07 апреля 2021 г., город Омск, Россия

Секция 3 Эксплуатация механо-технологического и энергетического
борудования объектов сбора, подготовки, транспорта и хранения
углеводородов143.
Алибек Маратович Бекахметов, Адильбек Хамзинович Мустафин, Даурен Нурланович Кабылкайыр, Нуртас Нуржанович Смагулов, Ризагуль Муслимовна Дюсова ИССЛЕДОВАНИЕ МЕТОДА СНИЖЕНИЙ ВИБРАЦИЙ НАСОСНЫХ АГРЕГАТОВ14
Владислав Викторович Гребенкин, Даурен Нурланович Кабылкиров ВИБРОЗАЩИТА АМОРТИЗИРУЮЩЕГО КРЕПЛЕНИЯ НАСОСА НА ФУНДАМЕНТЕ147
Айнур Сериковна Айдарбекова, Динара Габдулгазисовна Айгожина, Галия Казбековна Ахмедьянова, Гульнара Госмановна Абдуллина ВИБРАЦИОННАЯ ЗАЩИТА ОПОР И ОПОРЫ РОТОРА НАСОСНОГО АГРЕГАТА НА ПОДШИПНИКАХ КАЧЕНИЯ
Карина Руслановна Маралбаева, Ризагуль Муслимовна Дюсова РЕКОНСТРУКЦИЯ СИСТЕМЫ СГЛАЖИВАНИЯ ВОЛН ДАВЛЕНИЯ НЕФТЕПЕРЕКАЧИВАЮЩЕЙ СТАНЦИИ МАГИСТРАЛЬНОГО НЕФТЕПРОВОДА152
Константин Константинович Рюмкин, Игорь Николаевич Шахметов ИМПОРТОЗАМЕЩЕНИЕ МЕЖСЕКЦИОННЫХ УПЛОТНЕНИЙ НА ПРИМЕРЕ МНОГОСТУПЕНЧАТОГО HACOCA «GRUNDFOS»
Антон Александрович Литвин, Елена Сергеевна Удалова ВЫБОР ОПТИМАЛЬНЫХ КОНСТРУКТИВНЫХ ПАРАМЕТРОВ СУПЕРМАХОВИКА ДЛЯ ИСПОЛЬЗОВАНИЯ В НАСОСНЫХ АГРЕГАТАХ МАГИСТРАЛЬНЫХ НЕФТЕПРОВОДОЕ
Менсулу Манарбековна Кенжанова, Алуа Сабидуллақызы Какенова, Гайни Жумагалиевна Сейтенова, Нуртас Нуржанович Смагулов ОЦЕНКА ТЕХНИЧЕСКОГО СОСТОЯНИЯ ГОРИЗОНТАЛЬНОГО РЕАКТОРА И ПОВЫШЕНИЯ НАДЕЖНОСТИ ВАЛА МЕШАЛКИ

ІІ Международная научно-техническая конференция для молодых учёных

«Транспорт и хранение углеводородов» 07 апреля 2021 г., город Омск, Россия

УДК 621.65.03

Айнур Сериковна Айдарбекова, Динара Габдулгазисовна Айгожина,

Галия Казбековна Ахмедьянова, Гульнара Госмановна Абдуллина

ВИБРАЦИОННАЯ ЗАЩИТА ОПОР И ОПОРЫ РОТОРА НАСОСНОГО АГРЕГАТА НА ПОДШИПНИКАХ КАЧЕНИЯ

НАО «Торайгыров университет», г. Павлодар, Казахстан

Аннотация: Актуальностью темы является то, что повышенная вибрация может привести к трудностям в работе насосных агрегатов. Целью данной работы является снижение вибрации в опорах ротора насосных агрегатов на подшипниках качения. Снижение вибрации достигается при использовании упругого подшипника насоса, который создается при проектировании на стадии планирования.

Ключевые слова: вибрационная защита, насосный агрегат, опоры ротора, подшипник качения

Для оценки вибростойкости опор насосов на подшипниках качения рассматриваются горизонтальные электронасосные агрегаты типа Д с центробежным одноступенчатым насосом с рабочим колесом двухстороннего входа для перекачивания воды и сходных с ней по вязкости и химической активности жидкостей. Насосы 2Д630-125 и агрегаты на их основе применяются на насосных станциях городского, промышленного и сельского водоснабжения, а также в нефтехимической промышленности [1]. Частота колебаний при вращении вала $f = \kappa \omega / 2\pi$, где к=1, 2, 3 — номер гармоники. Для основной частоты при к=1, $f = 308,7/6,28 = 49,15 \Gamma \mu$, принято максимально допустимое параллельное смещение осей 0,10 мм. Центробежная сила, действующая на опоры ротора, при массе ротора $m_p=120$ кг составляет $F_r=120\cdot308,7^2\cdot0,110^{-3}=1145 H$.

Согласно теории распределения нагрузки между телами качения подшипника наибольшая сила приходится на шарик, расположенный напротив линии действия нагрузки:

$$F_0 = \frac{5F}{7},\tag{1}$$

где z=8 – число тел качения для подшипника 6316 и 313;

F - внешняя радиальная сила, воспринимаемая одним подшипником, равна половине суммы сил тяжести ротора и центробежной силы F = (1200+1145)/2=1172,5~H, тогда $F_0 = 51172,5/8 = 732,5~H$.

Распределение нагрузки в значительной степени зависит от величины зазора в подшипнике и от точности геометрической формы. Сближение осей двух сфер, контактирующих по вогнутым поверхностям согласно теории Герца:

$$\delta = 1,55^{3} \sqrt{(F_{0}/E)^{2} (R_{1} - R_{2})/2R_{1}R} , \qquad (2)$$

где R_1 -радиус кривизны поверхности внутреннего кольца по беговой дорожке:

$$R_1 = ((D-d)/2 - d_u)/2 + 0.5d = ((140-65)/2 - 23.8)/2 + 0.565 = 46.2 \text{ mm};$$
 (3)

 R_2 =12мм-радиус кривизны шарика. Тогда согласно сближение осей двух сфер или деформация тел качения:

$$\delta = 1,55^{3} \sqrt{(732,5/2 \ 10^{5})^{2} (46,2-12)/2.46,2.12} = 0,011 \text{MM} ;$$
 (4)

$$C_{n,\kappa} = F_0 / \delta = 732,5/0,01110^{-3} = 66,5910^6 H / M.$$
 (5)

«Транспорт и хранение углеводородов» 07 апреля 2021 г., город Омск, Россия

В дальнейшем эта величина коэффициента принимается за расчетную, поскольку здесь учитывается неравномерность распределения нагрузки между телами качения. Собственная частота системы

$$\omega_a = \sqrt{2.66,59 \cdot 10^6 / 120} = 1053 c^{-1}$$
.

Отношение частот вынужденных и собственных колебаний системы равно 0,292. Выражение $|1-(\omega/\omega_a)^2|=1-0,292^2=0,914$ т.е. практически близка к единице, поэтому передача внешней нагрузки F_r на обе опоры вала происходят с небольшим увеличением нагрузки F=1145/|0,914|=1252 H, т.е. в 1,09 раза. Для более высоких частот вынужденных колебании $\omega=308,73=926c^{-1}$. Отношение частот вынужденных и собственных колебаний системы равно 0,879. Выражение $|1-(\omega/\omega_a)^2|=1-0,879^2=0,227$. Амплитуда колебании от центробежной силы для этой частоты в три раза меньше и составляет 381,6 H. Тогда сила, передаваемая на опору 1681 H. Она превышает силу, передаваемую от основной гармоники в 1,34 раза.

Таким образом, в связи с достаточно высокой жесткостью подшипников качения они практически без трансформации, как на основной частоте, так и на гармонических составляющих передают внешнюю нагрузку от центробежной силы. Снижение вибрации достигается при использовании упругого подшипника насоса, который создается при проектировании на стадии планирования. [2]

Результаты исследовании, проведенные австрийской компанией «Getzner», показаны на рисунке 1 для питательного насоса с шариковыми подшипники с собственной частотой 12 Гц.

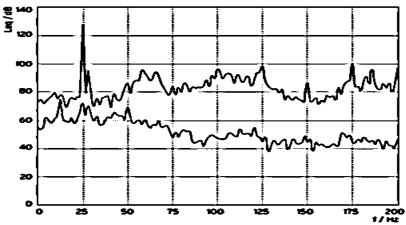


Рис.1. Снижение вибрации с помощью упругого подшипника

При производстве новых насосов напыление необходимо произвести на подготовленные посадочные отверстия. Напыляемые полиуретановые покрытия представляют собой двухкомпонентные эластомерные системы, которые не содержат растворителей, быстро полимеризуются (40–50 сек) и экологически безопасны. Срок службы покрытия составляет не менее 10–12 лет. [3] Получается монолитное эластомерное покрытие: абразивоустойчивое, антикоррозийное, герметичное, бесшовное и прочное.

Согласно формуле жесткости:

$$C_{37} = 336950,0147/0,002 = 147,13910^6 H/M$$
, (6)

При последовательном соединении элементов системы приведенная жесткость равна $247 \cdot 10^3 \, \text{H/m}$.

II Международная научно-техническая конференция для молодых учёных

«Транспорт и хранение углеводородов» 07 апреля 2021 г., город Омск, Россия

Отношение частот равно 4,78, что находится в диапазоне рекомендуемых отношении. Амплитуда силы, $F = 1145/|4,78^2-1| = 55,4 H$ меньше возмущающей силы в 20,5 раз.

Таким образом, подшипники качения в силу повышенной радиальной не обеспечивают снижения внешней нагрузки от центробежной силы, вызванной радиальным смещением осей. Основными причинами выхода из строя подшипников являются дефекты внутренней и внешней дорожек качения, дефекты элементов качения, дефекты сепаратора, ослабление посадки подшипника, увеличенный внутренний зазор, проворачивание внутреннего кольца на валу, перекос подшипника и дефекты смазки. Оценку амплитуды колебания подшипника, можно произвести на основании экспериментальных исследовании по величинам измеряемых значении вибрационной скорости и ускорении элементов насоса. Их замеры осуществляются по известным методикам с применением виброизмерительной аппаратуры. [4] По пороговым значениям СКЗ перемещений (таблица 1), зная величины коэффициентов жесткости опор без упругих элементов (жесткие опоры), можно вычислить допускаемые значения сил в этих опорах. Для границ зоны В, С амплитуды колебании подшипников в жесткой опоре (без упругого элемента) составляет $A_2 = 0.057 \cdot 10^{-3} \, M$. При жесткости опоры $C_{12} = 66,59 \cdot 10^6 \, H \, / \, M$ сила упругой деформации $F_{12} = 3795 \, H$, что значительно превосходит силу, определенную для случая радиального смещения осей валов на $0.0001 \, M$.

СКЗ Опоры Граница зон Перемещения, мкм Скорости, мм/с 29/22 2,3/1,4 A, B Жесткие B, C 57/45 4,5/2,8 C, D 97/71 7,1/4,5 45/37 3,5/2,3 A, B Податливые B, C 90/71 7,1/4,5 C, D 11.0/7.1 140/113

Таблица 1. Пороговые значения среднего квадратичного значения вибрационной скорости

Таким образом, с учетом дефектов дорожек тел качения при СКЗ вибрационной скорости 4,5 мм/с величина силы, нагружающей подшипник, оказалась в 3,58 раз большей, чем без учета этих особенностей подшипника. Для податливых опор для границ зоны В, С амплитуды колебании подшипников в опоре с упругим элементом составляет $A_2 = 0.0910^{-3}\,M$. При жесткости опоры $C_{12} = 247\cdot10^3\,H$ / M сила упругой деформации $F_{12} = 0.090\cdot10^{-3}\cdot247\cdot10^3 = 22,23\,H$, что в 48 раз меньше, чем для жесткой опоры.

БЛАГОДАРНОСТИ

Научный руководитель А. Х. Мустафин, к.т.н., профессор.

СПИСОК ИСТОЧНИКОВ

- [1] Биргер И.А. Расчеты на прочность деталей машин. Справочник /И.А.Биргер, Б.Ф.Шорр, Г.В.Иосилевич. –М.: Машиностроение, 1993.-702c
- [2] Гумеров А.Г. Виброизолирующая компенсирующая система насосно-энергетических агрегатов / А.Г. Гумеров, Р.С. Гумеров, Р.Г. Исхаков и др. Уфа, 2008. 328 с: ил.
- [3] Балякин В.Б. Снижение вибрационной активности турбонасосных агрегатов регулированием жесткости опор / В.Б. Балякин, А.И. Белоусов, А.И. Люлев // Известия Самарского научного центра Российской академии наук. − 2012. − Т. 14. − №4
- [4] ГОСТ Р 53565-2009. Контроль состояния и диагностика машин. Мониторинг состояния оборудования опасных производств. Вибрация центробежных насосных и компрессорных агрегатов. Введ. 15.12.2009. М.: Стандартинформ, 2010.