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Abstract—Approaches to guaranteeing the dimensional precision of machine parts are considered. It is diffi-
cult to formulate a uniform approach on account of the limited statistical data on which the corresponding
theory may be based. In addition, numerous factors determining the operational errors in the manufacturing
process must be taken into account. Accordingly, it is expedient to employ universal statistical and probabi-
listic methods in addressing the reliable dimensional precision of products.
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It is difficult to formulate a uniform approach in
dimensional analysis of prospective products on
account of the potential range and variability of their
characteristics [1–3]. In guaranteeing the manufac-
turing precision of machine parts, another complicat-
ing factor is that the statistical data on which the cor-
responding theory may be based are limited [4–8]. In
addition, numerous factors determining the opera-
tional errors in the manufacturing process must be
taken into account. Accordingly, it is expedient to
employ universal statistical and probabilistic methods
in addressing the reliable dimensional precision of
products [9–12].

In the present work, we present examples in which
the coefficient С characterizing the influence of ran-
dom factors on a specific technological operation and
the scale factor K of the actual accuracy and the model
accuracy with known accuracy at similar points for the
most common models and objects of analysis.

On the basis of simulation, the concept of the mean
relative technological perturbation Сme.si may be for-
mulated [4]. In our view, Сme.si characterizes the simi-
larity of the conditions in which the set of possible
dimensional values is formed (m elements), with given

characteristics of the shaping operation, and describes
the degree of perturbation of the actual shaping pro-
cess on account of random factors.

We assume that Сme.si is the unit of accuracy Δδi of
the shaping process: Δδi = Сme.si. In physical terms,
Сme.si is the mean number of perturbations per unit
dimensional length in one test for the set of possible
dimensional values (m elements) corresponding to
fixed modeling conditions or characteristics of the
shaping operation.

The coefficient Сsi characterizes the perturbation
over the whole operational cycle

(1)
In physical terms, Сsi is regarded as the mean num-

ber of perturbations per unit dimensional length over
the whole cycle ntot in which its accuracy is formed
within the given operation, for the adopted unit of
shaping accuracy Δδi = Сme.si. In that case, taking
account of Eq. (1), the dimensional precision in sim-
ulation is determined from the following formula,
according to [9]

(2)

=si tot me.si.С n С

δ = si si ,
i iL LP C K
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Fig. 1. Precision δ of dimension L determined by the
first (a) and the second (b) methods: (a) δcal1 = 602.4 μm,
δexp1 = 602.4 μm, С = 0.6024, K = 1; (b) δcal1 = 602.4 μm,
δexp1 = 602.4 μm, С = 0.001878, K = 10212.53. (d) calcu-
lation; (r) experiment.
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Table 1. Precision values with a single similar point

Point Machine 
tool

Δexp, μm L, mm σ, mm Р(L)

1 1А616 602.40 17 0.1004 0.9973
2 1А616 748.10 20 0.1247 0.9973
3 1K62 602.40 17 0.1004 0.9973
4 1K62 882.36 25 0.1471 0.9973
where K is the similarity of the precision of dimension
Li in simulation and in machining.

The physical meaning of the probabilities  and
 of dimensional perturbations in simulation and

analytical calculation, respectively, and the coeffi-
cients Сsi and С is the same [9]. Therefore, the final
form of Eq. (2) is

(3)

Analysis of the model in Eq. (3) indicates that the
dimensional error  is proportional to the relative
technological perturbation С for the given operation
and the probability  = 1 − exp(−CL) of perturbation
in establishing the dimensional accuracy, taking
account of the scale factor.

Theoretically, in solving practical and applied
problems, the coefficient С may be determined when
K = 1 if we know the precision for just one similar
point: n = 1. However, to improve the reliability of the
dependence δ = f(С, K, L) and the results obtained, we
consider examples in which С and K are determined
with two or more similar points: n = 2 and n > 2.

With a single similar point, С and K may be deter-
mined by two methods: 1) by variation of С; 2) by vari-
ation of K.

The first method includes the following steps.
1. Preliminary determination of Сpr from the con-

dition that Р(0, …, Lpi) = 0.9973

Here Lpi is the maximum possible dimension (test
characteristic) of practical interest.

2. Derivation of a refined value Cre for the similar
point of a beam (diameter 17 mm) with known preci-
sion, on the basis of the condition that the target func-
tion δexp − δcal = 0, by varying Сpr when K = 1. We find
that Сre = 0.602436.

In Fig. 1a, we plot δ = f(L) according to the model
in determining С and K by the first method. We find
Сre with known precision at a single similar point 1 of
the object of analysis and model, with scale factor
K = 1 (Table 1).

The second method includes the following steps.
1. Preliminary determination of Сpr from the con-

dition that Р(0, …, Lpi) = 0.9973

2. Determination of K on the basis of the condition
that the target function δexp − δcal = 0, for a single sim-
ilar point. We find that K = 10212.53.

siiLP

iLP

( )− δ = − 1 e .
i

CL
L CK

δ
iL

iLP

= =pr piln 370.370/ when 1;С L K

= =pr pi0.00187 when 3150 mm.С L

= =pr piln 370.370/ when 1;С L K

= =pr pi0.00187 when 3150 mm.С L
RUSSIAN
In Fig. 1b, we plot δ = f(L) according to the model
in determining С and K by the second method. We
find Сre = Сpr = 0.001878 with K = 10212.53, in the
case of known precision at similar point 1 of the object
of analysis and the model (Table 1).

As an example of the practical use of the proposed
probabilistic model, we consider the determination of
С and K in certification of a 1А616 lathe with the goal
of predicting the expected dimensional precision
 ENGINEERING RESEARCH  Vol. 43  No. 9  2023
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Table 2. Confidence interval Δ and probability Р with one-
sided scattering field (3σ rule)

Range of σ Δ, mm P(L) Dimension
L, mm

σ 0.1004 0.021 17.1004
±2σ 0.2008 0.157 17.2008
±3σ 0.3012 0.498 17.3012
±4σ 0.4016 0.839 17.4016
±5σ 0.5020 0.960 17.5020
±6σ 0.6024 0.997 17.6024

Table 3. Confidence interval Δ and probability Р with sym-
metric scattering field (3σ rule)

Δ, mm L, mm P(L)

±σ 17 ± 0.1004 0.6826
±2σ 17 ± 0.2008 0.9544
±3σ 17 ± 0.3012 0.9972
when the precision of the object of analysis is known
at two similar points: n = 2.

Certification of equipment entails assessment of its
distinctiveness and the individuality of the shaping
conditions, taking account of the technological and
operational characteristics, wear, and other details at
the instant of machining. The distinctiveness of the
shaping conditions is based on the degree of similarity
С of the technological action in the model

First, we analyze the concept of the precision δexp
at similar points of the object of analysis and the
model. The precision δexp of dimension L is the width
of the confidence interval Δ = Lmax − Lmin

with the corresponding confidence probability P(Li).
For example, P(L) = 0.9973 according to the 3σ rule.

To determine the accuracy δexp of dimension L, we
need to find its standard deviation σ. To that end, in
certification, two batches of rollers 50 pcs. in each
(diameter 17 and 20 mm) are preliminarily machined.
For each batch, the standard deviation σ of dimension
L is determined. Then, with the chosen confidence
level, the width Δ of the confidence interval is deter-
mined from the 3σ rule (Tables 2 and 3).

If P(Li) = 0.9973, we determine the width of the
confidence interval Δ = δexp = ±3σ or Δ = δexp = 6σ,
respectively, for a symmetric or one-sided position of
the scattering field relative to the rated value of L. In
the present case, we find that σ1 = 0.1004 μm and σ2 =
0.12468 μm for similar points 1 and 2 (Table 1),
respectively, when L = 17 and 20 mm for the rollers.

For the similar points, Δ1 = δexp1 = 6σ = 602.4 μm
and Δ2 = δexp2 = 6σ = 748.1 μm. With a confidence
level P(L) = 0.9973, we conclude that 99.73% of the
rollers of diameter 17 and 20 mm machined on the
1А616 lathe fall within these intervals. The possible
dimensional precision, the position of the scattering
field relative to the center of the group, and the width
of the intervals for rollers of diameter 17 mm are shown
in Fig. 2 (see also Tables 1–3).

( )− = − δ 1 e .
i

CL
L CK

Δ = δ = ± σ = σexp 3 6
RUSSIAN ENGINEERING RESEARCH  Vol. 43  No. 9
After preliminary determination of σ and Δexp in
certification of the 1А616 lathe, as well as Р(L) =
0.9973, we may calculate С and K.

Mathematically, if we know the dimensional preci-
sion δexp of the object of analysis and the model for at
least two similar points (n ≥ 2), we may determine С
and K by solving the equations

Note that, as a result of the errors in determining
the set of δexpi values, the final С and K values are
determined by the least squares method and correla-
tion analysis in practice, as a rule. In other words, the
sum of squares of the difference between δexpi and δcali
is minimized

Here the correlation coefficient

has a maximum value: for example, CC = 0.97.
Note that correlation analysis permits refinement

of the form of the relationship δcal = f(C, K, L) by
determining С, while the least squares method permits
minimization of the difference of δexpi and δcali by
determining K. Using the results of correlation analy-
sis to determine С and K is only recommended when
n > 2. With n = 1 and n = 2, refined values of С and K
are only used on minimization of the target function

In the light of the foregoing, we may determine С
and K as follows.

1. Preliminary determination of С = Сpr from the
condition that Р(0, …, Lpi) = 0.9973 when K = 1.

2. Preliminary determination of the correlation
coefficient CCpr between the experimental δexp and
calculated δcal values of the dimensional precision.

3. Refinement of Сpr by optimizing the target func-
tion CCpr = f(C, K, L) until CCpr = CCmax = 0.97 or the

δ = − −exp1 11 exp[ ( ) ;]CL CK

δ = − −exp 2 21 exp[ ( ) ;]CL CK

…

δ = − −exp 1 exp[ ( ) .]i iCL CK

( )
=

− →
2

exp cal
1

δ δ min.
n
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Fig. 2. Dimension L of a batch of rollers (diameter 17 mm)
with a symmetric (a) and one-sided (b) scattering field. 
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Fig. 3. Dimensional precision δcal = f(C, K, L) when K = 1
(a) and 191.5 (b): (a) δcal1 = 675.26 μm, δcal2 = 675.27 μm,
δexp1 = 602.41 μm, δexp2 = 748.12 μm; (b) δcal1 =
629.33 μm, δcal2 = 875.00 μm, δexp1 = 602.41 μm, δexp2 =
748.12 μm.
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target function  → min with vari-

ation in Сpr.

4. Refinement of K by minimizing the target func-

tion  → min on the basis of the

least squares method.

Note also that, to ensure similarity of the model
and the object of analysis—in other words, to ensure
that δexpi = δcali when n = 1 and n = 2—we consider two
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Table 4. Calculation results

Approximation 
by means of С K

Target function 
Σ(δexp − δcal)2

K 0.014786 191.4750722 16823.48594
K 0.014786 191.4750722 16823.48594
С 0.675271 1 10614.88225
approaches to determining С and K: (1) determination
of K and subsequent correction of С; (2) determina-
tion of С and subsequent correction of K.

We now determine С and K with two similar
points 1 and 2, whose precision is obtained on a 1А616
machine tool for the maximum possible dimension
Lpi = 400 mm in the conditions of practical interest, in
machining rollers of diameter 17 and 20 mm when
σ1 = 0.100402, σ2 = 0.124688, Δ1 = δexp1 = ±3σ =
602.4147 μm, Δ2 = δexp2 = ±3σ = 748.1252 μm, and
Сpr = ln370.370/Lpi = 0.014 786 with K = 1.

The results for С and K are shown in Table 4, while
δcal is plotted in Fig. 3. Analysis shows that, on approx-
imation of the similar points with variation in С, the
calculated precision is less than with variation in K.
However, the plot of δcal = f(C, K, L) when K = 1
(Fig. 3a) is much less clear than the plot of δcal =
 ENGINEERING RESEARCH  Vol. 43  No. 9  2023
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Fig. 4. Relative position of experimental and model points
(a) and a fragment of the graph on an expanded scale (b). 
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f(C, K, L) when K = 191.5 (Fig. 3b). The selection of
the method of determining С and K depends on the
specifics of the research; the researcher makes the
final decision.

Theoretically, in certification of equipment, deter-
mination of С when K = 1 is possible if the precision is
known for a single similar point. However, to improve
RUSSIAN ENGINEERING RESEARCH  Vol. 43  No. 9

Fig. 5. Dependence of the precision δcal on L in the range 0 < L
scale (b). 
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the accuracy of certification and to plot a satisfactory
graph of δ = f(L), the use of values for several similar
points is recommended.

We now consider the determination of С and K for
two similar points 3 and 4 when Lpi = 10000 mm for
rollers of diameter 17 and 25 mm when σ3 =
0.1004 μm, σ4 = 0.1470596 μm, Δexp3 = δexp3 = ±3σ =
602.4 μm, and Δexp4 = δexp4 = ±3σ = 882.358 μm. The
model parameters are shown in Table 5.

In Fig. 4, we present the relative position of the
similar points and the points in the model calculation
with С = 0.742378 and K = 1. We determine С and K
and also the value of the target function (39187.55603)
with approximation of the similar points by varying С
in the model equation.

In Fig. 5, we show the dimensional precision δcal in
the range 0 < Lpi < 10000 mm according to the model
calculation. We determine С = 0.00059145 and K =
101694.921 and also the value of the target function
(0.6535) with approximation of the similar points by
varying K in the model equation.

We now consider the determination of С and K for
the proposed model when n ≥ 2. For the experimental
precision of the object of analysis at the similar points,
we employ empirical dimensional precision values for
quality class 7 with the existing tolerances.

With the set of dimensional precision values at the
similar points of the model and the object of analysis,
we determine С and K from the dimensional precision
in quality class 7 over the range 0–3150 mm, as fol-
lows.

1. Determination of the preliminary value Сpr from
the condition

where Lpi = 3150 mm is the maximum possible value
of the dimension under consideration; and Сpr =
0.0018776.

( ) −= − =pr pi
pi 1 e 0.9973,C LP L
  2023
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Table 5. Calculation results

Approximation 
by means of С K

Target function 
Σ(δexp − δcal)2

K 0.000591 101694.9206 0.653522634
K 0.000591 101694.9206 0.653522634
С 0.742378 1 39187.55603
С 0.742378 1 39187.55603
2. Determination of the preliminary correlation
coefficient CCpr between the experimental and calcu-
lated values of the dimensional precision according to
the model when С = Сpr and K = 1 (Fig. 6). We find
that Сpr = 0.0018776, CCpr = 0.9081564 and K = 1.

3. Determination of the refined value Сre by opti-
mization of the target function CCpr with variation in
Cpr until the maximum possible CCpr value is obtained:
for example, CCpr → CCmax = 0.8–0.99 when K = 1.
We find that Сre = 0.00073753, CCmax = CCpr = 0.98,
and K = 1.

4. Refinement of K so as to minimize Σ(δexp − δcal)2

by the least squares method. We find that K =
274.4282913.

In Fig. 6, we show the final empirical results for the
dimensional precision in quality class 7 with the exist-
ing tolerances and the precision calculated from the
model with the given С and K values.
RUSSIAN

Fig. 6. Dependence of δ on L according to the model. 
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CONCLUSIONS
1. As a practical example, the coefficients С and K

have been determined on the basis of the proposed
model in certification of a 1А616 lathe with the goal of
predicting the expected dimensional precision when
the precision of the object of analysis is known at two
similar points: n = 2.

2. On the basis of the С and K values obtained, we
find that the accuracy given by the model in approxi-
mating the similar points is less with variation in С
than with variation in K.

3. Theoretically, in certification of equipment,
determination of С when K = 1 is possible if the preci-
sion is known for a single similar point. However, to
improve the accuracy of certification and to plot a sat-
isfactory graph of δ = f(L), the use of values for several
similar points is recommended.
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