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Abstract—The numerous factors that influence the technological process and cause errors during manufac-
ture of parts complicate the problem of ensuring the required accuracy of required dimensions. The article
proposes a method for determining coefficients of simulation models using probabilistic statistical methods,
the versatility of which makes them applicable to a wide range of problems.
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Ensuring the required accuracy during manufac-
ture of parts is complicated by the large volume of sta-
tistical data used as the scientific and applied basis for
doctrines for the formation of geometric accuracy
indicators [1–9]. The task of ensuring accuracy is
made highly complex by the need to adjust for a huge
number of factors that influence the technological
process and a wide range of properties of required
dimensions. Therefore, for these purposes it is advis-
able to rely on probabilistic statistical methods that
result in the development of a probabilistic model [5].

The results of simulation modeling (SM) [5] have
been used to formulate an indicator called the average
coefficient Cavg.SM of relative technological distur-
bances, which describes compliance of the conditions
for the formation of an array of possible values of
required dimensions Li of m elements under the tech-
nical and technological features of the performed
operation, i.e., coefficient Cavg.SM describes the inten-
sity of disturbances in the actual shaping process
caused by effects of random factors.

It is assumed that coefficient Cavg.SM is a condi-
tional unit of accuracy of the shaping process. The unit
of accuracy Δδi = Cavg.SM is the average number of dis-
turbances per unit length of required dimensions Li per
test for an array of possible values of required dimen-

sions Li of m elements formed under constant SM con-
ditions and adjusted for the technical and technologi-
cal features of the operation.

The average number of disturbances per unit of
required dimensions Li for the entire cycle of forming
its accuracy (i.e., for the total number of tests nttl) for
the considered technological operation is:

(1)

Then the accuracy of required dimensions in SM is
determined by the formula

(2)

where  is the probability of disturbances of
required dimensions.

The values of probability  in SM and probabil-
ity  obtained by analytical analysis [6, 10], as well as
the values of coefficient СSM in SM and coefficient C
obtained by analytical analysis [10], have the same
structure and the same physical significance; there-
fore, the final expression for model (2) has the form:

(3)
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where K is an indicator of similarity of the accuracy of
required dimensions Li in SM and during mechanical
processing (MP).

Analysis of model (3) showed that error  of
required dimensions is proportional to coefficient C of
relative technological disturbance for this operation
and probability  of disturbances in the formation of
the accuracy of required dimensions after adjustment
for the scale factor.

Before considering variations of the specific prob-
lem in terms of the methodology for determining indi-
cators C and K, let us first analyze the features of
determining similarity indicator K.

The numerical value of K is determined based on
the basic principles of dimensional analysis, according
to which:

(1) the dimensions of the parameter of the object of
analysis (OA) and the dimensions of the model must
be the same, unless the compared values are dimen-
sionless;

(2) the numerical values of the experimental OA
and the OA calculated according to model (3) must be
the same at a similar point (or points).

Then the similarity conditions for solving this
problem have the form:

where  is the dimensional similarity parameter of
the model;  is the dimensional similarity parameter
of the OA; and δ is the error calculated using the
model.

The sequence of determining the values of indica-
tors C and K depends on whether accuracies δ at sim-
ilar (reference) points of the OA and the model are
known and on the number of such points. Therefore,
based on the above, let us analyze the order and fea-
tures of deriving the numerical values of C and K for
the most common variations of practical problems.

Let us consider a version of determining the
numerical values of C and K when there are no a priori
values of processing accuracy at similar points of the
OA and the SM (3).

The absence of accuracy values at similar points of
the OA and the SM suggests the following. Consider
the construction of an informative dependence δ =
f(C, L, K) in the range of expected variation of
required dimensions L, which represents the influence
of indicators K and L on accuracy of δ at C = const. In
this case, at the first stage, for a random L, it is neces-
sary to determine the variation interval 0 ≤ L ≤ Lpi,
where Lpi is the maximum required dimensions defin-
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ing the boundary of the range, chosen based on pro-
duction interests.

Since there are no similar points of the OA and the
SM, the value of the similarity index is for conve-
nience assumed to be K = 1.

Assign a confidence level for the values of required
dimensions L being within the interval 0 ≤ L ≤ Lpi.

The confidence level of required dimensions is
selected based on the condition that a random variable
occurs in the considered range. For example, accord-
ing to the three-sigma rule, at a probability of 0.9973,
the occurrence of all expected values in the considered
range is 99.73%.

Having determined the interval of variations of
random variable L, confidence level Р(0–Lpi) =
0.9973, and coefficient K = 1, let us derive indicator C
for model (3).

According to [4], the probability of an exponential
continuous random variable X occurring in interval
(а, b) is defined by the distribution function

and is determined as

Given that  and :

At а = 0:

Then the expression for determining the probabil-
ity of continuous random variable L occurring in the
range of possible values 0 ≤ L ≤ Lpi takes the form:

At the accepted  = 0.9973:

or

(4)

The sequence of deriving indicator C in the absence
of a value of δ at a similar point:

(1) determine the interval for investigating the ran-
dom variable: 0 ≤ L ≤ Lpi, where Lpi is the maximum
possible required dimensions under the relevant pro-
duction conditions, corresponding to the right bound-
ary of the analysis range;
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Fig. 1. Graphical solution of the original equation.
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(2) select the confidence level Р(0–Lpi) for the
considered range of required dimensions 0 ≤ L ≤ Lpi.

(3) calculate C using formula (4).
The advantage of this approach to deriving indica-

tor C is that it enables constructing a family of infor-
mative dependencies δ = f(C, L, K) in the range 0 ≤
L ≤ Lpi for Lpi > 0, which, by varying K in the range
0 < K < ∞ and given an available accuracy value at
similar points of the SM and the OA, can be adapted
to any result of the study of the OA. In addition, the
dependence δ = f(C, L, K) makes it possible to use δ
as the numerical value of the closing link of the
dimensional chain machine-device-tool-workpiece
(MDTW) in equipment design.

With known accuracy at several similar points of
the OA and the SM, the final numerical value of K is
selected based on the results of correlation analysis
from the condition of its maximum value or from the
condition of the minimum sum of squares of devia-
tions of accuracy at similar OA-SM points according
to the least squares method.

Let us consider determination of the numerical
value of indicator C at known accuracy δ. There are
two possible options:

(1) the value of δe for the OA is known at one sim-
ilar point of the OA (n = 1);

(2) more than one value of δe for the OA, at several
similar points of the OA, are known (n > 1).

For a known value of δe, the solution to the prob-
lem is reduced to solving the equation

and for several known values, a system of equations:

The difference is that for a set of known values ,
the final value of C is determined using the least
squares method, i.e., the sum of the squares of the dif-
ference between  and  tends to the minimum:

There are several possible methods to determine C
in equation (3) for known values of :

(1) trial and error;
(2) analytically, by solving the equation and finding

an expression to determine the root of the original
equation C;

(3) graphically, by plotting the experimental ( )
and calculated ( ) values and determining the point
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of their intersection, which is the root of the original
equation.

These methods of determining C are described in
detail in [11, 12]. Let us focus on only the specific fea-
tures of their application to the considered problem.

For the number of similar points n = 1 and 2, there
are two approaches to determining C and K to fulfill
the condition of similarity between the SM and the
OA : the first approach is assignment of K
with subsequent correction of C, the second is deter-
mination of C with subsequent correction of K. Addi-
tionally, due to the specific features of the study, the
possibility of joint combined use of these methods is
not excluded.

The choice of determination of C or K or their
combined use depends on features of the study, and
the final decision is made by the researcher.

Let us analyze the application of these methods for
one similar point, which implies an unambiguous
solution of the original equation (3) from the condi-
tion  at one similar point at Le = Lc and K = 1
(Fig. 1).

Having determined C at K = 1 by expression (3) at
similar points, we can now calculate and predict accu-
racy values  for the entire range of required dimen-
sions in the range 0 ≤ L ≤ Lpi.

Let us derive C and K at known accuracy values δe1
and δe2 at two similar OA-SM points for required
dimensions L1 and L2 respectively.

Derivation of C and K by formula (3) is done by
optimizing objective functions (OF) via a series of suc-
cessive iterations of δe1 and δc1, δe2 and δc2 while vary-
ing C and K.

The first sequence of determining C and K at two
known experimental accuracy values δe1 and δe2 for the

=e cδ δi i
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Fig. 2. Dependencies of changes in accuracy parameters δe
( ), δacc ( ), δinit1 ( ), δinit2 ( ) on required
dimensions L.
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corresponding values L1 and L2 of required dimen-
sions:

(1) preliminary determination of the Сacc from the
condition Р(0–Lpi) = 0.9973 at K = 1;

(2) determination of the numerical value of C1 from
the condition OF = δe1 – δc1 = 0 at K = 1;

(3) determination of the numerical value of C2 from
the condition OF = δe1 – δc1 = 0 at K = 1;

(4) adjustment of the numerical value of K from the
condition of the minimum value of the OF of the sum
of squares of the difference:

or

according to the least squares method for a corre-
sponding value of С = С1 or С = С2 by varying param-
eter K.

The second sequence:
(1) preliminary determination of С = Сacc from the

condition Р(0–Lpi) = 0.9973 at K = 1;
(2) determination of the numerical value of K from

the condition OF = δe – δc = 0 for points 1 and 2;
(3) adjustment of indicator C by minimizing

 for points 1 and 2;
(4) adjustment of indicator K by minimizing

 for points 1 and 2;
The choice of the sequence for determining C and

K depends on features of the specific study, and the
final decision is made by the researcher.
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Let us consider the option of determining the
numerical values of C and K at known accuracy values
when there are more than two similar points (n > 2). In
this case, derivation of C is based on analysis of the
correlation coefficient between the set of accuracy val-
ues of the OA  and calculation of the accuracy val-
ues of the SM , followed by adjustment of the value
of K until the numerical equality  is achieved.

Based on the above, the sequence of derivation is as
follows:

(1) preliminary determination of Сacc from the con-
dition Р(0–Lpi) = 0.9973 at K = 1;

(2) preliminary determination of the correlation
coefficient KKacc between experimental (a priori) and
calculated values of tolerance accuracy δe and δc;

(3) adjustment of Сr from the condition of optimi-
zation of the values of the objective function OF =
KKacc by varying C up to the value of KKacc = KKmax =
0.97;

(4) adjustment of the numerical value of Kr from
the condition of the minimum value of the sum of
squares of the difference  using the least
squares method.

Sometimes the numerical values of C and K in
model (3), determined based on the known accuracy
values δ of the SM and the OA for one, two, or many
similar points, render graphical dependencies δ =
f(C, L, K) inconvenient in terms of clearly conveying
information. Therefore, in such cases the numerical
value of C can be adjusted to an acceptable value
(С → Сacc) while maintaining an acceptable level of
correlation KKb between the initial accuracy values δinit
of required dimensions L obtained before correction
and acceptable accuracy values δacc obtained after cor-
rection. Assume an acceptable level of correlation (or
the minimum possible correlation coefficient), for
example, KKb = 0.75.

Correction of C is valid because, firstly, the expo-
nential nature of the dependence δ = f(C, L, K)
remains, and numerical changes of δacc are in an
acceptable range, and secondly, the value of the cor-
relation coefficient remains within acceptable limits.

The numerical value of coefficient K according to
the least squares method is determined from the con-
dition of the minimum value of the objective function:

.
As an example, consider correction of two pro-

cesses with the parameters С1 = 0.095447 and K1 = 1;
С2 = 0.063573 and K2 = 1 and with the accepted values
Сacc and Kacc at δe1 = 42 μm, δe2 = 90 μm, L1 = 17 mm,
L2 = 25 mm.

The dependences of changes in accuracy parame-
ters δe, δacc, δinit1, δinit2 on required dimensions L are
shown in Fig. 2. The numerical values of the parame-
ters of the corrected process Сacc = 0.004587 and
Kacc = 22.00, while the correlation coefficients of the
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corrected process with the initial processes were
KKacc1 = 0.689; KKacc2 = 0.753.

Thus, it has been shown that the procedure of
determining the numerical values of C and K depends
on availability of known accuracy values δ at similar
OA-SM points and on the number of these points.
The proposed derivation of the values of C and K for
the SM is applicable to the most common variants of
the problem.

In the absence of accuracy values at similar points
of the OA and the SM, the procedure is to determine
the interval of variation of the random variable 0 ≤ L ≤
Lpi, select the confidence level Р(0–Lpi) for the con-
sidered range of required dimensions, calculate C
using formula (4), and construct the dependence δ =
f(C, L, K).

For n = 1 and 2, we consider two approaches to
determining C and K that take into account the simi-
larity condition for the SM and the OA :
assignment of K with correction of C, determination of
C with correction of K. For n > 2, determination of C
is based on analysis of the correlation coefficient
between the set of accuracy values δei of the OA and
the calculated values δci with adjustment of coefficient
K to achieve the equality .
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