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The inference of the energy equations for various kinds of movement
of system microparticles (for chaotic, directional, absolute) in case of
non-stationary current is given. Use of the received equations is shown on
the example of calculation of a non-stationary stream parameters in the
centered rarefaction wave.
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INTEGRATION OF EQUATION OF MOTION OF VISCOUS
COMPRESSIBLE FLUID (NAVIER-STOKES)
LENGTHWAYS TRAJECTORIES AND STREAMLINES

Method is founded on multiplication of members of the vectorial equa-
tion of Navier-Stokes on an elementary transition dr of an element of a

fluid, or on an elementary segment 8¢ of a streamline; thus the introduction
of potential functions of forces of pressure, mass forces and velocity is not
required. The method of calculation of the integrals, which are going into
obtained equations, on an example of the centered wave of pressure is given.

In existing educational courses of a mechanics of a fluid and gas [1, 2, 3]
the integration of equations of motion of Euler and Navier-Stokes is yielded
only along a streamline. A method of an integration of equations of motion of
Navier-Stokes along a trajectory, and also new method of an integration along a
streamline is explained below.

Let’s consider unsteady motion of viscous compressible fluid, for which
one the equation of motion of Navier-Stokes can be written to an aspect of the
vectorial equation expressing balance of specific forces (N/kg), operating on a
device (macroscopic particle) of a fluid of a unit mass, —

e —%gradp +HV3E +%V(VE)]=95_
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‘férav+fp+ffr+finer=0' (1)
where fm‘. = 1:' v/ m — specific gravity force;
f F lm=- -1- a@radp = —vgradp —specificresultant of forces of pressure
(hydrodvnamlc of prefsure) x= V/m — specific volume, m*/kg;
f& = ﬁ;.r/," =\{V2(‘ i 2 V(V¢)] - specific force of viscous friction;
_f;ner F, e/ m=—dc/dt — specific force of inertia.
Integration of the differential equation (1) in the beginning we shall conduct along
a trajectory of a macroscopic particle, that it is much easier, than integration along a

streamline, and it has concrete physical sense. For this purpose we shall multiply scalarly
all member of equations (1) on partial transition of a fluid particle d7 = dx7 + dyj +d=k :

Forar @ + F 07 + fodr + £, dF =0.- @

From the physical point of view such multiplication means passage from specific
forces to specific works (J/kg), which one are committed by these forces at transition

of a element of a fluid of a unit mass on distance dr . Let’s consider these works.
If in quality of spatial (volumetric) forces takes only force of the gravity,

directional vertically downwards ig ay = &mim = —I;g +

where g=—kg - the free fall acceleration, then specific work of gravity will
be defined so:

fsm F=—kg(dxi +dyJ +d_k)——gd..

The specific work of resultant of forces of pressure operating on the verges
of a macroscopic particle of a fluid, will be defined so:

f(lr = —vgradpdr -—u(—-dx+ o cyz+ &).

The specific work of viscous forces (friction work)

JodF =v[V% +%V(V(’)] dr = ouf, = —ou .

(here W' — work of external forces, w=—w" — work of interior forces).
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Specific work of an inertial force with the count that dr/dr=¢, will be
defined so:

finerdF =—(dé/dr)dF =~ dé = -dc?/2

(as we see, she is equal of decrease of a specific kinetic energy of an element of a fluid).
Substituting the retrieved expressions for works in the equation (2), we shall receive

a e @ 2 /
_gd:—v(o—i(k+o—;(y+gpdz)—owﬁ=dc2,2. (3)

Equation (3) expresses law of a modification of a kinetic energy of a element
of a fluid of an unit mass during dt.

Integrating equation (3) along trajectory from point / up to point 2 (figure
1), we shall receive final values of works and modification of a kinetic energy of
an element of a fluid of a unit mass during Ar:

2
3 )
25— 2)HeE —c) 24w, --| u( % &+ (—.:dz). (4)

trajectory

r+dr

1 — position of a macroscopic particle in moment of time t;;
2 — position of a macroscopic particle in moment of time t5;
dF — elementary transition of a macroscopic particle during d.

Figure 1 — To an integration along a trajectory

If to take a relation for a differential of pressure

6p ap ap cp
=——dt +——dx+——dy+——dz,
dp = t+a o )+6‘:
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ten the equanon ( )ISpOSSI e to glve and such view:

2 2
8(z—-z)Hei =)/ "+u,+.oqn—|03pdt 0. (5)
1 1
If a fluid is incompressible (v = const and inviscid V& =divé =0 ), then

Idp Pr=p)x=p-p)p
1

and the equation (5) will accept such view:

2
P S P> 6
JRRRY RPL SEY - S S Ny T (6)
¥ s 3g 2t tog et

2
1té
where quantity e = —Eja—fdt it is possible to term as an «inertial head»;
1

2 ~ 2 IC. 3
by =2 =Y [v2edr =L [(TE v+ — g dy+ L)
g & g3 ox o’ o2

specific weight work of frictional forces acting on a element of a fluid of a single
weight, J/N (friction head).

The equation (6) it is possible to term as a Bernoulli’s relation for an elemen-
tary trickle in case of non-stationary fluxion of viscous incompressible fluid. In
case of steady flow hiner = 0 and the equation (6) becomes of a known Bernoulli’s
relation for a elementary trickle of viscous incompressible fluid:

> 2
B, G ., +&+c—2+hﬁ. (7)
pg  2¢ g

For an integration of the equation (1) along a streamline we shall
multiply scalarly all its members on a elementary segment of a streamline

Z +—

8F = 8xi +8)) +8zk —elementary segment , is conducting in space in the given
instant (he the transition of a separate fluid particle does not characterize, as joins
two different fluid particles in the given instant), —

Sarae® + Sy F + [ OF + £ 6F =0, ®)
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Multiplying specific forces on segments of a streamline’, we obtain wtsrk
which one could be accomplished, if the fluid particle instantaneously moved
along a streamline under an operation of the forces, operating lengthways her in
the given instant, that is, these works are only calculated, or conditional, as the
real works are gained at multiplication of forces to real transition of a particle
dr . committed by her for some time interval.

In case of stationary (steady-state) flow, streamlines and allocation of values
of flow parameters along streamlines coincide with trajectories and allocation
of values of the corresponding parameters along trajectories. Only in this case,
conditional works, committed along streamlines gain sense of real works calling a
modification of' a kinetic energy of a fluid particle at her moving along a trajectory.

In conditionality of works committed along a streamline, concluded difficulty
of energy interpretation of members which are included in the integral Bemoulli,
obtained at an integration of the equations of Euler along a streamline. These
shortages the method of an integration of equations of motion along trajectories
surveyed above is dispossessed, that allows to consider his as basic for deriving
a Bernoulli’s relation (7) of the equation (1).

Let’s uncover expressions for conditional works which are included in
the equation (8).

Conditional specific work of gravity

ForayOF = 807 — kg(8xi +8yj +dck)=- g8z

The conditional specific work of resultant of forces of pressure

2 : i
f&:=—f)gl'acb-31"=—£3({:—par+ 25y+ i e
ax

1, i dp.

1
P

as the change of pressure along a streamline happens only at the expense
of icrease of coordinates, and the change of pressure from time to be equal
zero ( Py=0 ).

The conditional specific work of viscous forces (conditional friction work)

7 = u[VE +—;-V[VE)]BF = 5w, .

1 Streamline - line, in each point by which one the vector of velocity in the given instant is tangential to
her. Therefore, the streamline is formed by an whole of particles taken in one same instant, the velocities which
one are tangential to this line. The trajectory — line, which is described one the same particle at the her moving

for some time interval,
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(1n case of non stationary fluxion the work of fnctional force along a !]"ﬂJBCtD
is not equal to conditional work of frictional force along a streamline gy 3-,.1;12’ .
because the forces of the viscosities operating along a streamline between sections
{-2 in the given instant, are not equal to forces of viscosity operating on a fluid
particle at her moving between sections /-2 during dt).

As 6 /dt # €, thenand f;  6F = —(dc/dr)dF = —de? /2, therefore we shall
take advantage of transformations Gromeco-Lamba for acceleration of a particle

dé/dr = 6¢ /ot + grad(c?/2) + rotéx é -
Then

(& /dr)SF = (8¢/81)5F + grad(c” /2) 6F + (rot &x & ) 6F = (8¢/81)8F +dc 12

as by virtue of made above notes grad{czﬂ)ﬁ? —de?/2 and by virtue of a
pependicularity of vectors (rotcx € jand &7 (figure 2) the dot product of these
vectors is equal to zero (rot&x&)6F =0,

I — position of the first macroscopic particle in an instant #;;
2'— position of the second macroscopic particle in an instant #);
OF — elementary distance between two macroscopic particles

in an instant f.

Figure 2 — To an integration along a streamline
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With the count of made notes the equation (8) will accept an aspect

gz~ Ldp—Bw), = (3€/00)5F +dc2/2
P

Integrating this equation from a point / up to a point 2° (the point 2" on a
streamline has the same coordinates, as point 2 on trajectory of a particle, but as
the instants are various, also state variables of a particle in points 2 and 2* will be
different, excluding of height z) on a streamline, we shall receive

2 1 -
g(zz,—;,1+[d_P+(c§.—ﬁ);2w§r+j$&7=u (9)
1 P e

At p=const the equation (9) will accept an aspect of a Bernoulli’s relation
for a elementary tube of a current in case of non-stationary fluxion of viscous
incompressible fluid [1, 3]

bl 2
p G B, i i
Otttz +=—+—=+h__+h. (10)
""pg 28 7 pg 2 ‘
T
where hi'w = Ia_aj-' — so-called inertial head;
t

1

’ 2
k= Yo _ -iJVZESF — conditional friction heads.
g g7
In case of steady flow the equation (10), obtained at an integration along a
streamline, coincides with the equation (7), obtained at an integration along a trajectory.
Singularities of calculation of integrals included in equations (4), (5) and
(%), we shall show on an example of calculation of parameters of the unsteady
flow, originating in a centered wave of pressure.
The centered wave of pressure can be received in a tube in front of the cylinder
piston at his moving under the particular law, when all characteristics (straight
lines along which one all parameters of gas remain stationary values) intersect in

one point A{x;, f;) (figure 3). Coordinate of a point 4 can be spotted under the
formula x; =a,!,, where @, — speed of sound in nonperturbed gas, when the
flow velocity equal zero a, =0.

As the one-dimensional fluxion of gas in a wave of pressure is considered
isentropical (without exterior heat exchange and without friction) up to the moment
of formation of a shock wave in a point 4 , then the equation of a modification of
a kinetic energy of a macroscopic particle (4) at forgetfulness by work of gravity
will accept such aspect:
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1
(‘%-‘2—(‘5-’2:—“3 ;P(l\', (11)
4 dx

and the equation (5) with the count that connection between a denseness (specific
volume) and pressure is erected by the equation of an isentrope p,z'pk = const and

[xdp=fapip-fia_kp_ai_a
: _1 Pt ip, Fip k1 k1

(where }= (p _.-'(a Ta= HCP #p= the speed of sound), will accept such aspect:

2

Z 2 A
"_12+C_1:ﬂ_z+f_2¢jx'3_ﬂd,-_ (12)

k-1 2 k1 2 ot

Afxg, fo)

[}] Xy X2 N — Xg

{-2 — trajectory of a macroscopic particle;
{-2'—a streamline; 3 - path of the cylinder piston;
4 — characteristics

Figure 3 — To calculation of parameters of the unsteadyflow originating in
a centered wave of pressure

The equation (9), defining relation of parameters of gas on a streamline
(line /-2"in figure 3), with the count that in a point 2" gas is in a nonperturbed
state (€3 =¢, =0, ay =a, ), will accept such aspect:

=

2 2 7] 2

ai 0 a; ée

s e 2 ar

s *—1++I[5f]fl . (13)

Hy
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Let’s consider a method of calculation of an integral which 1s included in the
equation (11). Using association of pressure in the centered compression wave

from coordinates and time

T
p:{Sf'ﬁ)Tpn(l g ’Hﬂ]

Sa, t—4,

(all associations for a wave of pressure are taken from work [4, 5] for k£ =1,4 ), we find:

.6

1 x-—x; L
. it —1fq). 14
L or ;| (t—1p) (14)

92 —(/5)(516)° £o
ax i, \
and with the count of the equation of a trajectory for a macroscopic particle of gas

1
x=x,- 6al[mJﬁ—San (t,~1) (15)

tp—t

we transfer to one variable in the equation (14)

ﬁ
=(7/5)(5/6) Pn[ 6“' | (h — 1)/t ~15)°.
.

n

oy | Cu
b

Specific volume of gas is defined from the equation of an isentrope with
the count of association of pressure in a macroscopic particle from time from a
beginning of moving it

T : T
2 _(a) (4t} _(a
Pn [an) [I_r&] [a“}

and of relation for a speed of sound in nonperturbed gas ﬂ}? =kp, o,

oon(2]

5 =2
- qﬂn a ] |(f1-!n] é
pn G 1 !_fB

Differentiating the equation (15), we define association of elementary transi-
tion of a macroscopic particle from time
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1

dv = 5a, "=|fL ‘"} 1|
Uo'

Substituting the corresponding expressions in the equation (11) and integrat-
ing, we shall receive:

3: 5n| ]

1

2 1, (08P 4. _ (959 | 1 si f|] _n
c3/2-¢p iz =—|p—Sdv=(25/2 la.aq
112-¢ : A (2520 af | @, fg )

i\

{(ﬂz a ) -ia-a ). (16)

'Ut' 1)
On the other hand, using the equation of a relation of parameters on char-
acteristics

2 2
C:ZI‘:i-(ﬂl—ﬂn] and fgzﬁ(a ﬂ'n:l‘ (17)

find e i2-¢li2=

z 5 [(az- a )2 —(dj—ﬂn )2]'
(k1)
that coincides with expression (16). Therefore, the integration along a trajectory
of a particle in a wave of pressure is performed correctly.
Let’s consider a method of calculation of an integral which is going into the equation
(13). Using association of a velocity of a macroscopic particle on time and coordinates

S[x—xu ]
L= =dy |»
6\ =1,

find x.3 %
& 6 (-t)?

x3 2 2
E _i 4% | [ _i -
and j'(a]qu-lz[[—ﬁ_!n] (,2_;“”‘|z“"!*“” a1,

¥

Putting a value of this integral into the equation (13) and solving him
concerning a velocity cl, we shall recei\re

¢ =5(a-a )= (a »

that coincides with the equation of a TeEat:on of parameters on characteristic (17).
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