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FAULT RECONFIGURATION PARADIGM FOR THE CASCADED
H-BRIDGE MULTILEVEL INVERTER DRIVE

Since MLID (multilevel inverters drive) multilevel inverters contain several semicon-
ductors connected in series to achieve medium voltage and high power demand, one
might consider that multilevel inverters are less reliable. In contrast, multilevel cascaded
H-bridge inverters using modular series- cells with separated dc sources as depicted in
[1,2] could improve reliability if the MLID has the ability to detect and bypass the faulty
cell. If one of the power cells fails, it can be bypassed and operation can continue at re-
duced voltage capacity. The amount of reduction in capacity that can be tolerated de-
pends upon the application; however, in most cases a reduction in capacity is more pre-
ferable than a complete shutdown.

The reliability of a multilevel inverter having the bypass function in each cell has
been described in [1]. The article explains how the bypass function improves the
drive reliability. The major idea to improve reliability is to bypass the damaged cells by
using a magnetic contactor. The proposed solution in [1, 3] protects the failure of
all components in the faulty cells, rather than the damage to some power switches.
The definition of reliability given by [2] is "the probability of a device performing its
purpose adequately for the period of time intended under the operating condition
encountered”. The word adequately permits some application at reduced capacity to be
included in the probability calculations [1].

The engineering reliability analysis in a system is usually concerned with the reliabili-
ty R and/or the probability of failure P. As a system is considered reliable unless it fails,
the reliability and probability of failure sum to unity as explained in equation (1.1) [2].

R(t) + P(t) = 1,
R(t) = 1-P(t), (
P(t) = 1-R(t), (1.1)

where P(t) is probability of a system will fail by time t ,

R(t) is probability of a system will still be operational by time t.

Therefore, (1.1) can be applied in MLID system reliability analysis. Suppose that
the cascaded H-bridge MLID system as shown in [2] contains N cells and can not tole-
rate any failures; then, if the probability of a single cell will function properly during a
time interval is R, so that the probability all N cells will function properly during the same

time interval is RN because the MLID system is considered as series system in this
case. P(t) and R(t) can be defined as the point density functions;

dP(t) dR (t)

P = - . .
then, d(t) and , d(t) . Next, if the MLID has a cell which can tole-
rate failures, the MLID reliability will become

RN + [N xR (N-1) « (1-R)] instead of RN. It is obvious that the MLID with a tole-
rated failure cell has a higher reliability than the one without tolerance for failures. A
numerical reliability example of a MLID can be illustrated in Table. Assume that the ML-
ID in Table 1 has a cell reliability R of 99 % and it contains totally 15 cells. As can be
seen, with one extra cell in each phase, the reliability of the MLID can increase from 86
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% to 99.0 %; therefore, a fault diagnostic and fault reconfiguration (bypass) system
can improve the reliability of the MLID system. In addition, for the case of m tolerated
cells, the reliability function can be written as
m NI
R, = (— x ROV-1 (1 — R)i)
‘ ; (N—1)! x 1! ’ (1.2)

where m is number of tolerated cells,
N is number of cells in MLIDs,
Rm is total reliability of the system.

Table.

Numerical example of 15 cells MLID with 99 % reliability (R) in each power cell

N Reliability Function Reliability

to (Percentage)

fa

0 R, = RV 86,00 %

1 R, = Ry + [N xR®D x(1—R)] 99,04 %

2 Ry(2)=Ry(1)+[(VNx EN—-1)x (RIT((N—2))) X (0,5x (1-R)"2)] 99,96 %

3 R3=R2+[(NEN—-1)x(N—-2)x(RIT((N—3))x(0,1667 x (1-/99,99 %

ARTIFICIAL INTELLIGENT APPLICATION IN CONDITION MONITORING
AND DIAGNOSIS

The application of artificial intelligent (Al) in inverter drives is mostly based on speed
or position controller applications. Fuzzy-logic (FL) and neuron network (NN) are mostly
applied to such applications. Genetic algorithm is also applied on PI controller tuning and
parameter estimation problems. The Al-based controllers could lead to improved
performance, enhanced tuning and adaptive capabilities; however, there are additional
possibilities in other aspects of Al-based applications in inverter drives or other power
electronic areas.

It is possible that Al-based technique can be applied in condition monitoring
and diagnosis. By using condition monitoring, vast savings may be made through im-
proved maintenance procedures and policies. Al-based condition monitoring and diagno-
sis have several advantages; for instance, Al-based techniques do not require any ma-
thematical models, therefore the engineering time and development time could be
significantly reduced. Al-based techniques utilize the data sets of the system or expert
knowledge. Moreover, the reliability of the system can also improve by using diagnosis; for
example, in MLID applications, several types of signals such as voltage, current, noise,
vibration, temperature, and flux signals which can convey valuable information for diagno-
sis on the electrical and mechanical state of a MLID system including motor, multilevel
inverter and controller. The voltage and/or current signals could be used to diagnose a
drift of power semiconductor switches in the multilevel inverter which contains nu-
merous semiconductor switches.

Al-based fault diagnostic areas should include two different types of main
tasks as follows:
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- Fault classification (detection): The purpose of this task is to detect any selected
signals (electrical or mechanical) in the system. This could permit the system to be
scheduled maintenance and might also prevent incipient system fault and would allow im-
proving safety and reliability of the system;
- Fault localization: The purpose of this task is to identify the location of occurring
faults. This specifies the cause of the detected abnormal behaviors.

Al-based techniques can be applied to both diagnostic tasks. Fault classification is
a part of a protection paradigm and can also be considered as pattern recognition prob-
lems or non-linear problems [4]. Therefore, artificial neuron network (ANN) can be
used to perform the fault classification. ANN techniques permit input/output mapping
with a nonlinear relationship between nodes; also, ANN techniques provide the
ability to recognize anomalous situations because of their intrinsic capacity to
classify and generalize. Especially, the sensitivity and response time of the origi-
nal procedure presented for the on-line analysis of fault set repetition enable on-line
fault location techniques to be developed [5]. The normal and abnormal data or signals
can be used to train the ANN, so that the ANN can have ability to classify the differ-
ence between normal and abnormal condition of the system.

CONCLUSION

We offered the fault diagnostic, fault detection, and fault reconfiguration paradigm
for the cascaded H-Bridge multilevel inverter drive by applying artificial intelligent
based technigues. We diagnosed the fault locations in a MLID from its output voltage
waveforms is considered. MLID open circuit and short circuit faults at each switch are
considered. An example of a MLID open circuit fault at switch SA+ is represented in
Figure.

SA+ fault will cause unbalanced voltage and current output, while the induction mo-

tor is operating.
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Fig. 1. H-Bridge 2 Switch SA+ open circuit fault at second level of single-phase
multilevel-inverter
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This unbalanced voltage and current may result in vital damage to the induction
motor if the induction motor is run like this for a long time. The unbalanced condition
from fault SA+ can be solved if the fault location is correctly identified. Switching pat-
terns and the modulation index of other active switches in the MLID can be adjusted
to maintain output voltage and current in a balanced condition. Therefore, the MLID can
operate in a balanced condition at reduced power while the fault occurs until the operator
knows and repairs the inactive switch.

All occurring fault features can be classified based on their effects of the output
voltages; for that reason, one can use the output voltage signals as learning/training data
to a neural network. A neural network has the ability to recognize anomalous situations
because of their intrinsic capacity to classify and generalize. Genetic algorithm and
principal component analysis can also be applied in feature extraction process in or-
der to rate signals as an important feature. Thus, by applying the proposed Al-based
techniques in a fault diagnostic system, a better understanding on fault behaviors,
detections, and reconfigurations of a multilevel inverter drive system can be accom-
plished.
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