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PROPAGATION OF ELECTROMAGNETIC WAVES 

IN CHOLESTERIC LIQUID CRYSTALS 

K. R. Dossumbekov, N. A. Ispulov, A. A. Kurmanov, and A. Zh. Zhumabekov UDC 530.1:621.3 

Fundamental properties of solutions of Maxwell’s equations describing the propagation of electromagnetic 
waves in a cholesteric liquid crystal with tensor characteristics depending on one of the spatial coordinates 
(the Z-axis is chosen) are investigated. The matrix of the coefficients, the structure of the matrix of Maxwell’s 
equations, and the dispersion equations for an anisotropic liquid cholesteric medium are obtained. 
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INTRODUCTION 

Cholesteric liquid crystals (CLC) are anisotropic inhomogeneous materials with interesting and useful 
properties in the visible range of the electromagnetic spectrum. Christou et al. [1] used results of analysis of 
eigenmodes in a thin homogeneous intermediate layer of an CLC cell (liquid crystal consisted of several intermediate 
layers) to obtain expressions for the guided field. The cell was clamped between dielectric layers and was excited by 
an elliptically polarized obliquely incident plane wave. The solution of the linear system of equations gave the 
reflection and transmission coefficients in two main planes and the expansion coefficients for modal fields inside the 
CLC and dielectric layers. The propagation of plane electromagnetic waves through a liquid crystal layer was studied in 
[2]; special attention was given to the problem of optimization of the transmitted radiation intensity. The anisotropy of 
the liquid crystal layer controlled either by fastening to guiding glass plates located between the layers or by applying 
an external electromagnetic field allowed the layer orientation to be adjusted to maximize or minimize the intensity of 
radiation at a preset wavelength transmitted through the layer.  

The nonlinear spin dynamics of the Heisenberg helimagnet was studied during electromagnetic wave 
propagation in [3]. The basic dynamic equation of spin evolution governed by the Landau–Lifshits equation was 
analogous to the directive twist dynamics in cholesteric liquid crystals. It was revealed that both the magnetization, and 
the magnetic field itself were modulated as soliton modes in the process of electromagnetic wave propagation through 
the medium because of amplitude fluctuations introduced in the tail of the field. The quasi-isotropic approach (QIA) of 
geometrical optics which describes the properties of electromagnetic waves in weakly anisotropic media, including 
weakly isotropic fibers, liquid crystals, and weakly magnetized plasma, was stated in [4]. The QIA equations followed 
directly from Maxwell’s equations and had the form of the first-order coupled equations for the transverse 
electromagnetic field components. The QIA applied to the magnetized plasma describes the joint action of the Faraday 
and Cottoun–Mouton phenomena and provides the theoretical basis for plasma polarimetry in the far field infra-red 
(FIR) and microwave zones. Aksenova et al. [5, 6] considered the Green’s function and the waveguide propagation of 
the electromagnetic field in cholesteric liquid crystals with step larger than the wavelength. This function was 
constructed using the solution of Maxwell’s equations. They also analyzed in detail its behavior in the far field zone. 

Toraighyrov University, Pavlodar, Kazakhstan, e-mail: kairat_83@inbox.ru; nurlybek_79@mail.ru; 
almaskurmanov@mail.ru; almar89-89@mail.ru. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, 
No. 8, pp. 9–15, August, 2021. Original article submitted January 19, 2021; revision submitted May 19, 2021. 

1064-8887/21/6408-1391 2021 Springer Science+Business Media, LLC 

DOI 10.1007/s11182-021-02470-8



 1392 

A periodic system differs from an anisotropic medium by the presence of discontinuity on the wave vector surface and 
kink of the beam vector surface. The phenomena of plane wave reflection from and transmission through plates made of 
artificial bianisotropic homogeneous media were theoretically investigated in [7]. The case of the isotropic basic 
medium possessing only dielectric properties was studied. The feasibility of creation of the twirled omega structure with 
microwave properties analogous to those of the optical properties of cholesteric liquid crystals was demonstrated. 
Analytical solutions for the propagation of electromagnetic waves parallel to the spiral axis in a continuously twirled 
biaxial dielectric medium as well as along the screw axis of a supercholesteric material were presented in [8, 9]. Two 
optical axes of this unidirectional inhomogeneous medium lay in the plane perpendicular to the spiral axis and had 
a constant phase shift. The 4  4 optics matrix method was used. Exact solutions of the problem of axial wave 
propagation were obtained.  

Guided electromagnetic waves (GEW) at optical frequencies propagating in cholesteric liquid crystals of finite 
thickness were theoretically investigated in [10] under conditions of total internal reflection from both boundaries. Two 
types of the interface were discussed: CLC-metal and CLC-dielectric. It was shown that waves of two types could 
propagate in such films, namely, attenuated and non-attenuated modes. The second-order diffraction of the optical 
surface guided electromagnetic waves (SGEW) in cholesterics was studied in [11] in the context of dynamic diffraction 
theory. The dispersion equations were derived and analyzed. The frequency bands and the propagation directions 
(relative to the orientation of the director on the cholesteric surface) of the SGEW were determined. The structure and 
polarization of surface electromagnetic waves (SEV) propagating along the interface between the CLC and the substrate 
with a small refractive index were studied in [12]. It was shown that these SEV are effectively generated by the 
attenuated total reflection method. Processes in elastic anisotropic and anisotropic dielectric media and propagation of 
waves in anisotropic plates, electromagnetic waves in media with magnetoelectric effect [14–17], and waves in liquid 
crystals and thermoelastic media [18–20] were considered in [13] using the matricant method. Results of uniform 
description of wave processes in media with different physicomechanical properties were reported at the XVth All-
Russian School-Seminar “Physics and Application of Microwaves” named after A. P. Sukhorukov (Waves-2016) [21].  

PURPOSE, PROBLEMS, AND NOVELTY OF THE RESEARCH 

The purpose of the present work is a study of electromagnetic wave propagation in cholesteric liquid crystals 
based on the analytical matricant method. To achieve this purpose, the following problems have been solved: the system 
of the first order differential equations was constructed for cholesteric liquid crystals based on Maxwell’s equations 
using the method of separation of variables. This system described the propagation of electromagnetic waves in 
cholesteric liquid crystals. From this system of equations, the matrix of the coefficients was derived whose elements 
provided the basis for further research. Then the matricant (normalized solution of the system of differential equations) 
was obtained.  

The scientific novelty of the present work consists in the application of liquid crystals in electronic instrument 
making which uses the special features and laws of electromagnetic wave propagation. Among the advantages of 
application of the matricant method are introduction of the notion of the matricant structure and its definition has 
allowed us to generalize the classical methods developed by Brillouin and Parodi for discrete periodic structures to 
periodic inhomogeneous media; the possibility to halve the degree of the characteristic equation describing wave 
dispersion; the possibility of method application to a study of the electromagnetic and elastic (mechanical) wave 
propagation in different media, including elastic, thermoelastic, piezoelastic, piezoelectric, electroelastic, 
piezomagnetic, magnetoelectric, thermopiezoelectric, and liquid crystals. 

METHOD OF RESEARCH 

As a method of research, we used the matricant method that allowed us to obtain exact analytical solutions of 
differential equations describing coupled processes in media with piezoelectric, piezomagnetic, and thermopiezoelectric 
properties to solve problems formulated in the project. 
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Basic equations and relationships. Matrix of the coefficients 

The phase of the substance the molecules of which are stretched along a certain direction and are between the 
liquid and solid states is called liquid crystal one. If at the known coordinate z the orientation of molecules is observed, 
it will change by a spiral attendant to changes of z. Such substances refer to cholesteric liquid crystals (or cholesterics). 
The unit vector defining orientation of molecules is called the director. Its direction in the cholesteric is determined by 
the following formulas [22]: 

 

 

 

1 0

2 0

3

cos ,

sin ,

0.

x

y

z

n n q z

n n q z

n n

   

   

 

  (1) 

The spatial period of the director spiral is about 3103 Å, that is, greater than the atom size. The dielectric permittivity 
tensor depends only on the components of the vector [22]: 

  ij ij i j i jn n n n       , (2) 

where   and   are the relative dielectric permittivity components along the Z axis and perpendicular to it. Let us 

write the dielectric permittivity tensor components using formula (2): 

 

     

   

2 2 2
11 1 1 1 12 1 2 1 2 1 2

2 2 2
13 21 12 22 2 2 2

23 31 32 33

1 , ,

0, , 1 ,

0, 0, 0, .

n n n n n n n n n

n n n

        

    



                     

                

        

  (3) 

The structure of the dielectric permittivity tensor has the following form: 

 

11 12

12 22

33

0

ˆ 0

0 0

  
 
     
 
  

. (4) 

Considering formula (1), from formulas (3) we obtain 

    2
11 0cos q           , 

      12 0 0cos sinq q          , 

    2
22 0sin q           , 

 33    . 
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The form of the dielectric permittivity tensor corresponds to that of the anisotropic dielectric medium of a monoclinic 
system. In this case, the second order symmetry axis is parallel to the Z axis.  

Let the values of the dielectric permittivity and magnetic permeability be known. The properties of the medium 
are given, even if one of them is a scalar. Based on this, we can write material equations for the dielectric anisotropic 
medium in the form 

 0i ij jD E   ,  ,ij   r , 0i ij jB H   ,  ,ij   r . (5) 

Let us assume that these tensors depend only on one spatial coordinate Z, that is, the medium is inhomogeneous along 
the Z axis. If the volume charge density ρ and the current density j are equal to zero, the system of Maxwell’s equations 
takes the form  

 rot
t


 


B

E , (6) 

 div 0B , (7) 

 rot
t




D

H , (8) 

 div 0D , (9) 

where E  is the electric field strength, B  is the magnetic field induction vector, H  is the magnetic field strength, and 
D  is the electric field induction vector. 

Considering the foregoing, the wave fields Е, Н, B, and D can be represented in harmonic form as  

 ( , ) x yi t ik x ik y
z e

   F F ,  (10) 

where   is the frequency and xk  and yk  are the wave vector components along the X and Y axes, respectively. The 

properties of the medium do not depend on x and y coordinates. We can write the system of the first order equations 
describing the propagation of electromagnetic waves in the cholesteric crystal in the form 
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 (11) 

or in the matrix form 
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Let us write Eq. (12) as 

 ˆxd
B

dz


u
u , 

  , , ,
t

y x y xE H H Eu , (13) 

where the matrix B̂  has the structure 
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ˆ
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, (14) 

in which the coefficients of matrix (14) have the form 
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 
          

 

Coefficients (14) provide the basis for a study of the system of four first-order differential equations. These equations 
describe electromagnetic processes in inhomogeneous material media in which anisotropic properties are manifested in 
the process of propagation of electromagnetic harmonic time-dependent waves. 
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Matricant structure 

The normalized solution of Eq. (13) is called matricant [23]. Maxwell’s equations are then structured with 
application of the method of successive approximations and mathematical induction by comparing terms of the series 
for the direct and inverse matricants [23]:  

 
1

1 1 1 2 1 2
0 0 0

( ) ( ) ( )
zz z

T E B z dz B z B z dz dz       , 
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1
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0 0 0

( ) ( )
zz z

T E Bdz B z B z dz dz         

The structure of fundamental solutions of equations for electromagnetic wave propagation in cholesteric liquid crystals 
is defined by the structure of matrix coefficients (14). Comparing even and odd terms of these series, we finally obtain 
the matricant structures in the form 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

t it it t

it t t it
T

it t t it

t it it t

 
 
 
 

  
 
 
  
 

, 

 

22 12 42 32

21 11 41 31
1

42 14 44 34

23 13 43 33

t it it t

it t t it
T

it t t it

t it it t



  
 
   

  
  
 
     

. 

The identity  defines all invariant relations reflecting laws of conservation of electromagnetic 
waves during their propagation in inhomogeneous crystals: 

 11 22 12 21 13 24 14 23 1t t t t t t t t    , 

 11 42 12 41 13 44 14 43 0it t it t it t it t    , 

 33 44 34 43 31 42 32 41 1t t t t t t t t    , 

 41 12 41 11 43 14 44 13 0it t it t it t it t     , 

where ijt  are the elements of the direct matrix Т. 

ETTTT   11
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Dispersion equations for an average medium 

During propagation of long electromagnetic waves in cholesteric liquid crystals, h   ( 02 /h q  ), where 

  is the wavelength and h  is the spiral pitch or the inhomogeneity period of the cholesteric liquid crystal; then the 
matricant of Maxwell’s equations can be written in the form [13] 

 
   

2 1

1 2 2 12 2

ˆ ˆ
cos sin cos sin

B Bp p E p p E
T E kH kH E H H

p p p pk
        
                   

        
. (15) 

The matrix of the coefficients  

  
0

1 h

B B Z dZ
h

    (16) 

has been introduced into this relationship, where  B Z  is given by Eq. (14), the matrix p̂  in the second 

approximation is defined by the formula 

  
2 2

2
1

ˆ
2

p E B h  , (17) 

and 1,2p  and ,k    are roots of the characteristic equation. This is defined by the condition 

  2ˆdet 0p kE    , (18) 

  

2
2 2

12 21 43 34 12 24 13 21 12 24 43 13 21 34
2
1,2 12 21 13 24 34 43

13 34 24 43

1 1
1 2 22
2

b b b b b b b b b b b b b b
k b b b b b b

b b b b

     
    



. 

The matricant of Maxwell’s equations describing the propagation of electromagnetic waves in the cholesteric crystal in 
the long-wavelength approximation ( 02 / q   ) has the form 

 
1 1

ˆ ˆcos sin cos sin
2 2

B B
T E kZ kZ E Z Z

k
                             

    
, (19) 

where the matrix ̂  has the structure 

 

1 14

1 23

14 1

23 1

0 0
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ˆ
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  
 
   

   
  
 
 
   

, 
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2

ij
ij

p 
    

. 

Thus we have obtained the structure of the matricant of Maxwell’s equations and the roots of dispersion equation (18). 
Now we analyze the roots of the dispersion equation. Considering that the crystal parameters are periodic 

functions of the z coordinate (φ(z) = φ(z + h) and ψ(z) = ψ(z + h)), we can determine the general type of electromagnetic 
wave dispersion from the structure of the matrix of fundamental solutions. Based on provisions obtained in [13], we can 
write the condition of derivation of dispersion equation (18) 

 11
ˆ

2
p T T     , (20) 

where  

 

1 13 14

1 23 24

24 14 2

23 13 2

0

0
ˆ

0

0

p p p

p p p
p

p p p

p p p

 
 
 
 

  
 
 
   

. 

The roots of characteristic equation (18) give the following formulas for the dispersion: 

 
1 1

2 2

cos ,

cos ,

k z

k z

 

 
 

where λ1 and λ2 are roots of Eq. (18): 

 

   

   

21 2
1,2 1 2 14 23 13 24

21 2
1,2 1 2 14 23 13 24

1
4 ,

2 2

1
4 .

2 2

p p
p p p p p p

p p
p p p p p p


     


     

 (21) 

Thus, dispersion equations (21) in the analytical form have been derived from the structure of the matricant of 
Maxwell’s equations (6)–(9) and characteristic equation (18). 

CONCLUSIONS 

In this work we have studied the propagation of electromagnetic waves in liquid cholesteric crystals by the 
matricant method. Based on Maxwell’s equations and material relationships, the system of the first order differential 
equations describing the propagation of electromagnetic harmonic waves in anisotropic liquid crystals was obtained. 
The matrix of the coefficients and the structure of the matricant were determined in the general case. 

As a result of research taking into account periodic changes of the components of the dielectric permittivity 
tensor, the dispersion equations were obtained for electromagnetic waves propagating in cholesteric liquid crystals. The 
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roots of these equations determine the propagation velocity and the coefficients of electromagnetic wave attenuation in 
cholesteric liquid crystals. The analytical matricant form was obtained in terms of the Chebyshev–Gegenbauer 
polynomials. 

This work was supported by the Committee of Science of the Ministry of Education and Science of the 
Republic Kazakhstan (Scientific Research Grant AP08856290). 
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