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This paper considers a new method based on the law of energy conservation for the study of thermo-stress-strain state of a rod
of limited length with simultaneous presence of local heat fluxes, heat exchanges, and thermal insulation. The method allows
determining the field of temperature distribution and the three components of deformations and stresses, as well as the magnitude
of the rod elongation and the resulting axial force with an accuracy of satisfying the energy conservation laws. For specific initial
data, all the sought-for ones are determined numerically with high accuracy. We found that all solutions satisfy the laws of energy
conservation.

1. Introduction

This work is devoted to the study of the thermo-stress-strain
state of a rod of constant cross section and of limited length.
In this case, a heat flux of constant intensity is supplied to a
closed local surface. The rest of the side surface of the rod
is fully thermally insulated. Through the cross-sectional area
of the two ends of the rod, convective heat exchange with
the environment occurs. In this case, the coefficients of heat
transfer and the temperature of the surrounding medium
at the two ends of the rod are different. To determine the
temperature field, the energy conservation law is used in the
form of the total heat energy functional taking into account
the existing dissimilar types of heat sources, physical and
mechanical properties of the rodmaterial, and its geometrical
dimensions. Using this, the law of temperature distribution
along the length of the rod under study is constructed. They
determine the magnitude of the elongation of the rod, in the
case of pinching one end. If both ends of the rod are clamped,
then the magnitude of the resulting axial force is determined.
The laws of distribution of thermoelastic, temperature, and

elastic components of deformations and stresses are also
determined depending on the presence of local heat flux,
thermal insulation of heat exchanges, the geometry of the
rod, and the physic-mechanical properties of the material
of the rod. To determine the displacement field, the energy
conservation law is used in the form of the potential energy
functional of elastic deformation taking into account the
presence of a temperature field. Further, the displacement
field is determined taking into account the actual operating
conditions. The developed program allows varying the values
of the source data.

In [1], the fundamental laws of the theory of thermoe-
lasticity for deformable solids are given. In [2, 3], the results
of a numerical study of a thermo-stress-deformed state of a
rod under the action of laser beams are presented. In this
case, the finite element method was used. The application
of the finite element method is given in [4]. In [5], the
exact solution of a two-dimensional definition problem in
an ideally elastic-plastic cylindrical rod with a given uniform
internal temperature is given. The dependence of voltage on
temperature in a rod of limited length is given in [6]. In

Hindawi
Advances in Mathematical Physics
Volume 2019, Article ID 8986010, 9 pages
https://doi.org/10.1155/2019/8986010

http://orcid.org/0000-0003-4703-1413
http://orcid.org/0000-0002-0506-2417
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/8986010


2 Advances in Mathematical Physics

Ｂ1

４％ＨＰ1

q

I II III

l1 l2 l3

Ｂ2

４％ＨＰ2

x

Figure 1: The design scheme of the problem.

this work, the temporary factor is also taken into account.
In [7], different statements of problems of thermal elasticity
are given for structural elements under temperature effects.
In this case, the theoretical basis of the method is focused
on the Maysel formula of uncoupled thermoelasticity. In [8],
on the basis of the small parameter method, the problem of
determining the stress-strain state of an elastic-plastic pipe
in the presence of temperature is considered. It uses the
terms of Mises. In [9], the fundamentals of the theory of
thermoelasticity and methods for their implementation in
solving specific applied problems are presented. This takes
into account the power and temperature factors. In the works
[10, 11] methods and computational algorithms for numerical
solution of the class of applied problems of mechanics are
presented.

In contrast to the above works, this paper uses the fun-
damental energy conservation laws in combination with the
constructed quadratic spline functions to solve a particular
applied problem.

2. Formulation of the Problem and Methods

We consider a horizontal bar of limited length L [cm], and a
constant cross section 𝐹[𝑐𝑚2]. The horizontal axis ox we will
direct from the left to right coincides with the axis of the rod.
The side surfaces of the sections (0 ≤ 𝑥 ≤ 𝑙1) and (𝑙2 ≤ 𝑥 ≤ 𝐿)
the core are fully thermally insulated. A heat flux of constant
intensity q[W/cm2] is supplied on the lateral surface of the
rod section (𝑙1 ≤ 𝑥 ≤ 𝑙2). Through the cross-sectional area
of the left and right ends of the rod, heat exchange with the
environment takes place.

Heat transfer coefficients at x = 0 and at x = L [W/cm2].
The temperature of the environments of these areas are𝑇𝐸𝑛V1 and 𝑇𝐸𝑛V2 [𝑜𝐾], respectively. The design scheme of the
problem is shown in Figure 1.

3. The Solution to the Problem Using the
Energy Conservation Law

The rod under consideration is discretized by elements of
length L [cm]. Within the length of one discrete element,
we approximate the temperature field by a second-order
polynomial

𝑇 (𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐, 0 ≤ 𝑥 ≤ 𝑙 (1)

where a, b, c are constants, the values of which are still
unknown. The law of temperature distribution within the
length of one discrete element is shown in Figure 2.
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Figure 2: The law of temperature distribution along the length of
one discrete element.

In the local coordinate system 0 ≤ 𝑥 ≤ 𝑙, we fix three
nodes with coordinates 𝑥𝑖 = 0; 𝑥𝑗 = 𝑙/2; 𝑥𝑘 = 𝑙.

The temperature values in these sections will be denoted,
respectively, by the following.

𝑇 (𝑥 = 𝑥𝑖 = 0) = 𝑇𝑖;
𝑇 (𝑥 = 𝑥𝑗 = 𝑙

2 ) = 𝑇𝑗;
𝑇 (𝑥 = 𝑥𝑘 = 𝑙) = 𝑇𝑘

(2)

Then substituting (2) into (1), we get the following system.

𝑎 ∙ 0 + 𝑏 ∙ 0 + 𝑐 = 𝑇𝑖
𝑎 ∙ ( 𝑙

2)2 + 𝑏 ∙ ( 𝑙
2 ) + 𝑐 = 𝑇𝑗

𝑎 ∙ 𝑙2 + 𝑏 ∙ 𝑙 + 𝑐 = 𝑇𝑘
(3)

Solving the system, we define the following.

c = 𝑇𝑖;
𝑏 = 4𝑇𝑗 − 3𝑇𝑖 − 𝑇𝑘

𝑙 ;

𝑎 = 2𝑇𝑘 + 2𝑇𝑖 − 4𝑇𝑗
𝑙2

(4)
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Substituting (4) into (1), we have the following.

𝑇 (𝑥) = 2𝑇𝑘 + 2𝑇𝑖 − 4𝑇𝑗
𝑙2 ∙𝑥2 + 4𝑇𝑗 − 3𝑇𝑖 − 𝑇𝑘

𝑙 ∙ 𝑥 + 𝑇𝑖
= ( 2𝑥2 − 3𝑙𝑥 + 𝑙2

𝑙2 ) 𝑇𝑖 + ( 4𝑙𝑥 − 4𝑥2
𝑙2 ) 𝑇𝑗

+ ( 2𝑥2 − 𝑙𝑥
𝑙2 ) 𝑇𝑘, 0 ≤ 𝑥 ≤ 𝑙

(5)

Here we introduce the following notations.

𝜑𝑖 (𝑥) = 2𝑥2 − 3𝑙𝑥 + 𝑙2
𝑙2 ;

𝜑𝑗 (𝑥) = 4𝑙𝑥 − 4𝑥2
𝑙2 ;

𝜑𝑘 (𝑥) = 2𝑥2 − 𝑙𝑥
𝑙2 ,

0 ≤ 𝑥 ≤ 𝑙

(6)

These functions are called quadratic spline functions
in the local coordinate system. They have the following
properties.

𝜑𝑖 (𝑥) =
{{{{{{{{{

1, 𝑎𝑡 𝑥 = 0
0, 𝑎𝑡 𝑥 = 𝑙

20, 𝑎𝑡 𝑥 = 𝑙;

𝜑𝑗 (𝑥) =
{{{{{{{{{

0, 𝑎𝑡 𝑥 = 0
1, 𝑎𝑡 𝑥 = 𝑙

20, 𝑎𝑡 𝑥 = 𝑙;

𝜑k (x) =
{{{{{{{{{

0, at x = 0
0, at x = l

21, at x = l;

(7)

𝜑𝑖 (𝑥) + 𝜑𝑗 (𝑥) + 𝜑𝑘 (𝑥) = 1; 0 ≤ 𝑥 ≤ 𝑙 (8)

The temperature gradient within the length of one dis-
crete element in the local coordinate system has the following
form.

𝜕𝑇
𝜕𝑥 = 𝜕𝜑𝑖 (𝑥)

𝜕𝑥 𝑇𝑖 + 𝜕𝜑𝑗 (𝑥)
𝜕𝑥 𝑇𝑗 + 𝜕𝜑𝑘 (𝑥)

𝜕𝑥 𝑇𝑘
= 4𝑥 − 3𝑙

𝑙2 𝑇𝑖 + 4𝑙 − 8𝑥
𝑙2 𝑇𝑗 + 4𝑥 − 𝑙

𝑙2 𝑇𝑘, 0 ≤ 𝑥 ≤ 𝑙
(9)

Here the following should be noted.

𝜕𝜑i (x)
𝜕x Ti + 𝜕𝜑j (x)

𝜕x Tj + 𝜕𝜑k (x)
𝜕x Tk = 0 (10)

To construct resolving systems of equations taking into
account the natural boundary conditions, we discretize the
rod under study by three elemental lengths. For the first
discrete element, the total energy functional with the thermal
insulation of the side surface is as follows.

𝐽1 = ∫
𝑆(𝑥=0)

ℎ12 (𝑇 − 𝑇𝑜𝑐1)2 𝑑𝑠 + ∫
𝑉1

𝐾𝑥𝑥2 ( 𝜕𝑇
𝜕𝑥 )2 𝑑V,
(0 ≤ 𝑥 ≤ 𝑙1)

(11)

Here the first integral over the cross-sectional area of the
left end takes place only for points of this surface. In the
local coordinate system, taking into account the global node
indexing, (11) can be rewritten in the following form:

𝐽1 = 𝐹 (𝑥 = 0) ℎ12 (𝑇 − 𝑇𝑜𝑐1)2 + 𝐹𝐾𝑥𝑥2
⋅ ∫𝑙
0

[( 4x − 3𝑙1𝑙12 𝑇1 + 4𝑙1 − 8𝑥
𝑙12 𝑇2

+ 4𝑥 − 𝑙1𝑙12 𝑇3)]
2

𝑑𝑥 = 𝐹ℎ12 (𝑇1 − 𝑇𝑜𝑐1)2

+ 𝐹𝐾𝑥𝑥6𝑙1 [7𝑇21 − 16𝑇1𝑇2 + 2𝑇1𝑇3 − 16𝑇2𝑇3 + 16𝑇22
+ 7𝑇23 ]

(12)

where ℎ1 is the heat transfer coefficient.
Here it must be said that the lateral surface of the first

discrete element is fully thermally insulated. In expression
(12), it should be noted that the sum of the coefficients before
the nodal values of temperature will be zero. For example,
in the first bracket (1-1) = 0, and in the second bracket [7-
16 + 2-16 + 16 + 7] = 0. Now in Figure 1 we consider the
second discrete element.This item is internal. But on the side
surface of this element summed thermal constant intensity𝑞[𝑊/𝑐𝑚2], the total heat energy functional will have the
following form.

𝐽2 = ∫
𝑉2

𝐾𝑥𝑥2 ( 𝜕𝑇
𝜕𝑥 )2 𝑑V + ∫

𝑆𝑛3𝑛

𝑞𝑇𝑑𝑠 = 𝐹𝐾𝑥𝑥2
⋅ ∫𝑙
0

[( 4x − 3𝑙2𝑙22 𝑇3 + 4𝑙2 − 8𝑥
𝑙22 𝑇4

+ 4𝑥 − 𝑙2𝑙22 𝑇5)]
2

𝑑𝑥

+ 𝑞𝑃 ∫𝑙
0

[( 2x2 − 3𝑙2𝑥 + 𝑙22𝑙22 ) 𝑇3
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+ ( 4𝑙2𝑥 − 4𝑥2
𝑙22 ) 𝑇4 + ( 2𝑥2 − 𝑙2𝑥𝑙22 ) 𝑇5] 𝑑𝑥

= 𝐹𝐾𝑥𝑥6𝑙2 [7𝑇23 − 16𝑇3𝑇4 + 2𝑇3𝑇5 − 16𝑇4𝑇5 + 16𝑇24
+ 7𝑇25 ] + 𝑞𝜋𝑟𝑙23 (𝑇3 + 4𝑇4 + 𝑇5) , (𝑙1 ≤ 𝑥 ≤ 𝑙2)

(13)

Here 𝑉2 is the volume of the second discrete element; P
= 2𝜋k is the perimeter of the cross section. Finally go to the
last third discrete element. The side surface of this element
is fully insulated, but through the cross-sectional area of the
right end there is a heat exchange with its environment. In
this case, the heat transfer coefficient is ℎ2, and the ambient
temperature is 𝑇𝐸𝑛V2. The length of this item is 𝑙3. The total
heat energy functional for the third discrete element will be
as follows:

𝐽3 = ∫
𝑉3

𝐾𝑥𝑥2 ( 𝜕𝑇
𝜕𝑥 )2 𝑑V + ∫

𝑆(𝑥=𝑙1+𝑙2+𝑙3)

ℎ22 (𝑇

− 𝑇𝑜𝑐2)2 𝑑𝑠 = 𝐹𝐾𝑥𝑥2 ∫𝑙
0

[( 4x − 3𝑙3𝑙23 ) 𝑇5

+ ( 4𝑙3 − 8𝑥
𝑙23 ) 𝑇6 + ( 4𝑥 − 𝑙3𝑙23 ) 𝑇7]

2

𝑑𝑥

+ 𝐹ℎ22 (𝑇7 − 𝑇𝑜𝑐2)2 = 𝐹𝐾𝑥𝑥6𝑙3 [7𝑇25 − 16𝑇5𝑇6
+ 2𝑇5𝑇7 − 16𝑇6𝑇7 + 16𝑇26 + 7𝑇27 ] + 𝐹ℎ22 (𝑇7
− 𝑇𝑜𝑐2)2 , (𝑙2 ≤ 𝑥 ≤ 𝐿)

(14)

where 𝑉3 is the volume of the third discrete element and F is
the cross-sectional area of the rod; then the total heat energy
functional for the rod under study has the following form.

𝐽 = 𝐽1 + 𝐽2 + 𝐽3 = 𝐹ℎ12 (𝑇1 − 𝑇𝑜𝑐1)2 + 𝐹𝐾𝑥𝑥6𝑙1 × [7𝑇21
− 16𝑇1𝑇2 + 2𝑇1𝑇3 − 16𝑇2𝑇3 + 16𝑇22 + 7𝑇23 ]
+ 𝐹𝐾𝑥𝑥6𝑙2 × 𝐹𝐾𝑥𝑥6𝑙2 ⋅ [7𝑇23 − 16𝑇3𝑇4 + 2𝑇3𝑇5
− 16𝑇4𝑇5 + 16𝑇24 + 7𝑇25 ] + 𝑞𝜋𝑟𝑙23 (𝑇3 + 4𝑇4 + 𝑇5)
+ 𝐹𝐾𝑥𝑥6𝑙3 [7𝑇25 − 16𝑇5𝑇6 + 2𝑇5𝑇7 − 16𝑇6𝑇7 + 16𝑇26
+ 7𝑇27 ] + 𝐹ℎ22 (𝑇7 − 𝑇𝑜𝑐2)2

(15)

To construct resolving systems of linear algebraic equa-
tions for the nodal values of temperatures, the functional 𝐽 is
minimized by T1, T2, . . ., T7.

(1) 𝜕𝐽
𝜕𝑇1 = 0;

󳨐⇒ 𝐹ℎ1 (𝑇1 − 𝑇𝐸𝑛V1) + 𝐹𝐾𝑥𝑥
6𝑙1 [14𝑇1 − 16𝑇2 + 2𝑇3]

= 0;
(2) 𝜕𝐽

𝜕𝑇2 = 0;

󳨐⇒ 𝐹𝐾𝑥𝑥
6𝑙1 [−16𝑇1 + 32𝑇2 − 16𝑇3] = 0;

(3) 𝜕𝐽
𝜕𝑇3 = 0;

󳨐⇒ 𝐹𝐾𝑥𝑥 [( 2𝑇1 + 16𝑇2 + 14𝑇36𝑙1 ) + ( 14𝑇3 − 16𝑇4 + 2𝑇56𝑙2 )] + 𝑞𝜋𝑟𝑙23 = 0;

(4) 𝜕𝐽
𝜕𝑇4 = 0;

󳨐⇒ 𝐹𝐾𝑥𝑥
6𝑙2 [−16𝑇3 + 32𝑇4 − 16𝑇5] + 4𝑞𝜋𝑟𝑙23 = 0;

(5) 𝜕𝐽
𝜕𝑇5 = 0;
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󳨐⇒ 𝐹𝐾𝑥𝑥 [( 2𝑇3 − 16𝑇4 + 14𝑇56𝑙2 ) + ( 14𝑇5 − 16𝑇6 + 2𝑇76𝑙3 )] + 𝑞𝜋𝑟𝑙23 = 0;

(6) 𝜕𝐽
𝜕𝑇6 = 0;

󳨐⇒ 𝐹𝐾𝑥𝑥
6𝑙3 [−16𝑇5 + 32𝑇6 − 16𝑇7] = 0;

(7) 𝜕𝐽
𝜕𝑇7 = 0;

󳨐⇒ 𝐹𝐾𝑥𝑥
6𝑙3 [2𝑇5 − 16𝑇6 + 14𝑇7] + 𝐹ℎ2 (𝑇7 − 𝑇𝐸𝑛V2) = 0.

(16)

Solving this system, the node values of temperatures𝑇1, 𝑇2, . . . , 𝑇7 are calculated. They are used to construct the
law of temperature distribution along the length of three
discrete sections of the rod.

𝑇(𝐼) (𝑥) = ( 2𝑥2 − 3𝑙1𝑥 + 𝑙21𝑙21 ) 𝑇1 + ( 4𝑙1𝑥 − 4𝑥2
𝑙21 ) 𝑇2

+ ( 2𝑥2 − 𝑙1𝑥𝑙21 ) 𝑇3, 0 ≤ 𝑥 ≤ 𝑙1

𝑇(𝐼𝐼) (𝑥) = ( 2𝑥2 − 3𝑙2𝑥 + 𝑙22𝑙22 ) 𝑇3 + ( 4𝑙2𝑥 − 4𝑥2
𝑙22 ) 𝑇4

+ ( 2𝑥2 − 𝑙2𝑥𝑙22 ) 𝑇5, 0 ≤ 𝑥 ≤ 𝑙2

𝑇(𝐼𝐼𝐼) (𝑥) = ( 2𝑥2 − 3𝑙3𝑥 + 𝑙23𝑙23 ) 𝑇5 + ( 4𝑙3𝑥 − 4𝑥2
𝑙23 ) 𝑇6

+ ( 2𝑥2 − 𝑙3𝑥𝑙23 ) 𝑇7, 0 ≤ 𝑥 ≤ 𝑙3

(17)

If the coefficient of thermal expansion of the material of
the rod 𝛼[1/0𝐾] is a constant value, then the value of thermal
elongation of the rod Δ𝑙𝑇[𝑐𝑚] in case of pinching with one
end is determined in accordance with the theory of thermal
physics [11].

Δ𝑙𝑇 = ∫𝐿
0

𝛼 ⋅ 𝑇 (𝑥) 𝑑𝑥. (18)

where 𝑇 (𝑥) = 𝑇(𝐼) (𝑥) + 𝑇(𝐼𝐼) (𝑥) + 𝑇(𝐼𝐼𝐼) (𝑥) (19)

If both ends of the rod are clamped, then it cannot
lengthen, but there is an axial compressive force R [kG],
which is determined by the conditions of compatibility
deformation.

Then substituting (19) in (18), we get the following.

Δ𝑙𝑇 = 𝛼 [ 𝑙16 𝑇1 + 2𝑙13 𝑇2 + 𝑙16 𝑇3 + 𝑙26 𝑇3 + 2𝑙23 𝑇4 + 𝑙26 𝑇5
+ 𝑙36 𝑇5 + 2𝑙33 𝑇6 + 𝑙36 𝑇7] = 𝛼

6 [𝑙1𝑇1 + 4𝑙1𝑇2
+ (𝑙1 + 𝑙2) 𝑇3 + 4𝑙2𝑇4 + (𝑙2 + 𝑙3) 𝑇5 + 4𝑙3𝑇6 + 𝑙3𝑇7]

(20)

If both ends of the rod are clamped, then it cannot lengthen,
but there is an axial compressive force R [kG], which is
determined by the conditions of compatibility deformation.
The essence of this approach is as follows. First, consider the
horizontal rod clamped by the left end (Figure 3).

This rod is under the influence of the compressive force
R which is applied at the right free end. Then, according to
Hooke’s law, it is reduced by the value of Δ𝑙𝑅

Δ𝑙𝑅 = 𝑅 ∙ 𝐿
𝐸 ∙ 𝐹 (21)

where 𝐿 = 𝑙1 + 𝑙2 + 𝑙3 is the total length of the test rod,𝐸[𝑘𝐺/𝑐𝑚]modulus of elasticity of thematerial of the rod, and𝐹[𝑐𝑚2] rod area.
If both ends of the rod under study are rigidly clamped,

then naturally it does not lengthen or shorten; i.e.,

Δ𝑙𝑅 + Δ𝑙𝑇 = 0. (22)

Then, taking into account (21), we will determine the
value of the axial compressive force R that arises in the
clamped rod by the two ends of the rod under study.

𝑅 = − 𝐸 ∙ 𝐹 ∙ Δ𝑙𝑇𝐿 = − 𝐸 ∙ 𝐹 ∙ 𝛼
6𝐿 [𝑙1𝑇1 + 4𝑙1𝑇2

+ (𝑙1 + 𝑙2) 𝑇3 + 4𝑙2𝑇4 + (𝑙2 + 𝑙3) 𝑇5 + 4𝑙3𝑇6 + 𝑙3𝑇7]
(23)

In this case, the distribution field of the thermoelastic
component of stress 𝜎[kG/cm2] also arises, which is deter-
mined in accordance with Hooke’s law [1].
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R

Figure 3: The left end of the rod is pinned under the influence of
compressive force R [kG].

In this case, the distribution field of the thermoelastic
component of stress 𝜎[kG/cm2], which is determined in
accordance with Hooke’s law [1], also appears.

𝜎 (𝑥) = 𝑅
𝐹 = 𝑐𝑜𝑛𝑠𝑡 (24)

Then, according to Hooke’s law, the field distribution
of the thermoelastic component of deformation has the
following form.

𝜀 (𝑥) = 𝜎 (𝑥)
𝐸 = 𝑐𝑜𝑛𝑠𝑡 (25)

The field distribution of the temperature component of
the strain and stress is determined on the basis of the general
theory of thermoelasticity.

@𝑇 (𝑥) = −𝛼𝑇 (𝑥) , (26)

𝜎𝑇 (𝑥) = 𝐸 ⋅ 𝜀𝑇 (𝑥) = −𝛼𝐸𝑇 (𝑥) , (27)

From these relations, in accordance with the theory of
thermoelasticity, the field distribution of elastic components
of deformations and stresses is determined.

𝜀𝑥 (𝑥) = 𝜀 − 𝜀𝑇 = 𝜎 (𝑥)
𝐸 + 𝛼 ⋅ 𝑇 (𝑥) , (28)

𝜎𝑥 (𝑥) = 𝐸 ⋅ 𝜀𝑥 (𝑥) = 𝜎 (𝑥) − 𝜎𝑇 (𝑥) , (29)

The displacement field along the length of one discrete
element of length l [cm] is approximated by a complete
second-order polynomial.

𝑈 (𝑥) = 𝜑𝑖 (𝑥) 𝑈𝑖 + 𝜑𝑗 (𝑥) 𝑈𝑗 + 𝜑𝑘 (𝑥) 𝑈𝑘, 0 ≤ 𝑥 ≤ 𝑙 (30)

The gradient of displacement is determined from here

𝜕𝑢
𝜕𝑥 = 4𝑥 − 3𝑙

𝑙2 𝑈𝑖 + 4𝑙 − 8𝑥
𝑙2 𝑈𝑗 + 4𝑥 − 𝑙

𝑙2 𝑈𝑘, 0 ≤ 𝑥 ≤ 𝑙 (31)

where 𝑈𝑖 = 𝑈(𝑥 = 0); 𝑈𝑗 = 𝑈(𝑥 = 𝑙/2); 𝑈𝑘 = 𝑈(𝑥 = 𝑙).
The potential energy functional of elastic deformation in the
presence of a temperature field has the following form [1].

^ = ∫
𝑉

𝜎𝑥 (𝑥)
2 𝜀𝑥 (𝑥) 𝑑V − ∫

𝑉
𝛼𝐸 ⋅ 𝑇 (𝑥) ⋅ 𝜀𝑥 (𝑥) 𝑑V (32)

where 𝜀𝑥(𝑥) = 𝜕𝑈/𝜕𝑥 = ((4𝑥 − 3𝑙)/𝑙2)𝑈𝑖 + ((4𝑙 − 8𝑥)/𝑙2)𝑈𝑗 +
((4𝑥 − 𝑙)/𝑙2)𝑈𝑘 is the elastic component of deformation;𝜎𝑥(𝑥) = 𝐸𝜀𝑥(𝑥) = 𝐸(𝜕𝑈/𝜕𝑥) = 𝐸[((4𝑥 − 3𝑙)/𝑙2)𝑈𝑖 + ((4𝑙 −8𝑥)/𝑙2)𝑈𝑗 + ((4𝑥 − 𝑙)/𝑙2)𝑈𝑘] is the elastic component of stress.

Given these relations, the expression of the potential
energy of other strains for the rod under study can be
rewritten as follows.

^ = ∫
𝑉1

𝜎𝑥 (𝑥)
2 𝜀𝑥 (𝑥) 𝑑V − ∫

𝑉1

𝛼 ⋅ 𝐸 ⋅ 𝑇 (𝑥) ⋅ 𝜀𝑥 (𝑥) 𝑑V
+ ∫
𝑉2

𝜎𝑥 (𝑥)
2 𝜀𝑥 (𝑥) 𝑑V − ∫

𝑉2

𝛼 ⋅ 𝐸 ⋅ 𝑇 (𝑥)
⋅ 𝜀𝑥 (𝑥) 𝑑V + ∫

𝑉3

𝜎𝑥 (𝑥)
2 𝜀𝑥 (𝑥) 𝑑V − ∫

𝑉3

𝛼 ⋅ 𝐸

⋅ 𝑇 (𝑥) ⋅ 𝜀𝑥 (𝑥) 𝑑V = 𝐸𝐹
2 ∫𝑙1
0

[ 4x − 3𝑙
𝑙2 𝑈1

+ 4𝑙 − 8𝑥
𝑙2 𝑈2 + 4𝑥 − 𝑙

𝑙2 𝑈3]
2 𝑑𝑥

− 𝛼𝐸𝐹 ∫𝑙1
0

[ 2x2 − 3𝑙𝑥 + 𝑙
𝑙2 𝑇1 + 4𝑙 − 4𝑥2

𝑙2 𝑇2

+ 2𝑥2 − 𝑙𝑥
𝑙2 𝑇3] × [ 4x − 3𝑙

𝑙2 𝑈1 + 4𝑙 − 8𝑥
𝑙2 𝑈2 + 4𝑥 − 𝑙

𝑙2
⋅ 𝑈3] 𝑑𝑥 + 𝐸𝐹

2 ∫𝑙2
0

[ 4x − 3𝑙
𝑙2 𝑈3 + 4𝑙 − 8𝑥

𝑙2 𝑈4
+ 4𝑥 − 𝑙

𝑙2 𝑈5]
2 𝑑𝑥 − 𝛼𝐸𝐹 ∫𝑙2

0
[ 2x2 − 3𝑙𝑥 + 𝑙

𝑙2 𝑇3

+ 4𝑙 − 4𝑥2
𝑙2 𝑇4 + 2𝑥2 − 𝑙𝑥

𝑙2 𝑇5] × [ 4x − 3𝑙
𝑙2 𝑈3

+ 4𝑙 − 8𝑥
𝑙2 𝑈4 + 4𝑥 − 𝑙

𝑙2 𝑈5] 𝑑𝑥 + 𝐸𝐹
2

⋅ ∫𝑙3
0

[ 4x − 3𝑙
𝑙2 𝑈5 + 4𝑙 − 8𝑥

𝑙2 𝑈6 + 4𝑥 − 𝑙
𝑙2 𝑈7]

2 𝑑𝑥

− 𝛼𝐸𝐹 ∫𝑙3
0

[ 2x2 − 3𝑙𝑥 + 𝑙
𝑙2 𝑇5 + 4𝑙 − 4𝑥2

𝑙2 𝑇6

+ 2𝑥2 − 𝑙𝑥
𝑙2 𝑇7] × [ 4x − 3𝑙

𝑙2 𝑈5 + 4𝑙 − 8𝑥
𝑙2 𝑈6

+ 4𝑥 − 𝑙
𝑙2 𝑈7] 𝑑𝑥 = 𝐸𝐹

6𝑙1 (7𝑈21 + 16𝑈22 + 7𝑈23
− 16𝑈1𝑈2 + 2𝑈1𝑈3 − 16𝑈2𝑈3) − 𝛼𝐸𝐹 (− 1

2𝑇1𝑈1
+ 2

3 𝑇1𝑈2 − 1
6 𝑇1𝑈3 − 2

3𝑇2𝑈1 + 2
3 𝑇2𝑈3 + 1

6 𝑇3𝑈1 − 2
3

⋅ 𝑇3𝑈2) + 𝐸𝐹
6𝑙2 (7𝑈23 + 16𝑈24 + 7𝑈25 − 16𝑈3𝑈4

+ 2𝑈3𝑈5 − 16𝑈4𝑈5) − 𝛼𝐸𝐹 ( 2
3 𝑇3𝑈4 − 1

6𝑇3𝑈5 − 2
3

⋅ 𝑇4𝑈3 + 2
3 𝑇4𝑈5 + 1

6 𝑇5𝑈3 − 2
3 𝑇5𝑈4) + 𝐸𝐹

6𝑙3 (7𝑈25
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+ 16𝑈26 + 7𝑈27 − 16𝑈5𝑈6 + 2𝑈5𝑈7 − 16𝑈6𝑈7)
− 𝛼𝐸𝐹 ( 2

3 𝑇5𝑈6 − 1
6 𝑇5𝑈7 − 2

3 𝑇6𝑈5 + 2
3 𝑇6𝑈7 + 1

6
⋅ 𝑇7𝑈5 − 2

3𝑇7𝑈6 + 1
2 𝑇7𝑈7)

(33)

Due to the pinch of both ends of the rod, 𝑈1 = 𝑈7 = 0.
By minimizing this functional on the nodal displace-

ments 𝑈2, 𝑈3, . . . , 𝑈6, a resolving system of linear algebraic
equations is constructed for the desired quantities, taking into
account the simultaneous presence of heterogeneous heat
sources and thermal insulation

(1) 𝜕^
𝜕𝑈2 = 0;

󳨐⇒ 𝐸𝐹
6𝑙1 (32𝑈2 − 16𝑈3) − 𝛼𝐸𝐹 ( 2

3 𝑇1 − 2
3 𝑇3) = 0;

(2) 𝜕^
𝜕𝑈3 = 0;

󳨐⇒ 𝐸𝐹 [( 14𝑈3 − 16𝑈216𝑙1 ) + ( 14𝑈3 − 16𝑈4 + 2𝑈516𝑙2 )] − 𝛼𝐸𝐹 (− 1
6 𝑇1 + 2

3 𝑇2 − 2
3 𝑇4 + 1

6 𝑇5) = 0;

(3) 𝜕^
𝜕𝑈4 = 0;

󳨐⇒ 𝐸𝐹
6𝑙2 (32𝑈4 − 16𝑈3 − 16𝑈5) − 𝛼𝐸𝐹 ( 2

3𝑇3 − 2
3 𝑇5) = 0;

(4) 𝜕^
𝜕𝑈5 = 0;

󳨐⇒ 𝐸𝐹 [( 14𝑈5 + 2𝑈3 − 16𝑈416𝑙2 ) + ( 14𝑈5 − 16𝑈6 + 2𝑈716𝑙7 )] − 𝛼𝐸𝐹 (− 1
6𝑇3 + 2

3 𝑇4 − 2
3 𝑇6 + 1

6𝑇7) = 0;

(5) 𝜕^
𝜕𝑈6 = 0;

󳨐⇒ 𝐸𝐹
6𝑙3 (32𝑈6 − 16𝑈5 − 16𝑈7) − 𝛼𝐸𝐹 ( 2

3𝑇5 − 2
3 𝑇7) = 0.

(34)

By solving the latter system, the values 𝑈2, 𝑈3, . . . , 𝑈6 are
determined. According to them, the displacement field is
constructed within three discrete elements.

𝑈(𝐼) (𝑥) = 4𝑙𝑥 − 4𝑥2
𝑙2 ⋅ 𝑈2 + 2𝑥2 − 𝑙𝑥

𝑙2 ⋅ 𝑈3
𝑈(𝐼𝐼) (𝑥) = 2𝑥2 − 3𝑙𝑥 + 𝑙2

𝑙2 ⋅ 𝑈3 4𝑙𝑥 − 4𝑥2
𝑙2 ⋅ 𝑈4

+ 2𝑥2 − 𝑙𝑥
𝑙2 ⋅ 𝑈5

𝑈(𝐼𝐼𝐼) (𝑥) = 2𝑥2 − 3𝑙𝑥 + 𝑙2
𝑙2 ⋅ 𝑈5 4𝑙𝑥 − 4𝑥2

𝑙2 ⋅ 𝑈6

(35)

4. Analysis of the Obtained Results

For the practical application of the above method and
algorithm, we take the following initial data:

𝐿 = 3𝑐𝑚;
𝑟 = 1 𝑐𝑚;
𝛼 = 0,0000125 1/0P;
𝐸 = 2 ⋅ 106 𝑘𝐺/𝑐𝑚2;

P𝑥𝑥 = 100 𝑤𝑎𝑡𝑡/𝑐𝑚 ⋅ 0𝐾;
ℎ1 = ℎ2 = 10 𝑤𝑎𝑡𝑡/𝑐𝑚2 ⋅ 0𝐾;

𝑇𝑎𝑥𝑖𝑠1 = 𝑇𝑎𝑥𝑖𝑠2 = 400𝐾;
𝑞 = −500 𝑤𝑎𝑡𝑡/𝑐𝑚2;

(36)
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Figure 4: Temperature dependence T along the length of the rod.
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Figure 5: Dependencies deformations along the length of the rod.
(1) Distribution law of temperature component of deformation𝜀𝑇(𝑥); (2) law distribution of thermoelastic component of deforma-
tion 𝜀(𝑥); (3) law distribution of elastic component of deformation𝜀𝑥(𝑥).

with these initial data, the resulting solution is shown in
Figures 4–7.

For the numerical solution of the problem under con-
sideration, the rod under study was discretized by n =
24—discrete elements of the same length 𝑙 = 𝐿/𝑛 = 30/24 =1,25𝑐𝑚.The side surface of the first and last 8 elements is fully
insulated. The heat flux 𝑞 = −500𝑤𝑎𝑡𝑡/𝑐𝑚2 is supplied to the
lateral surface of the middle 8 elements.

From Figure 4, it is seen that, due to the symmetry of
the problem under consideration, at the ends of the rod the
temperature values will be T (x = 0) = T (x = L) = 5400 K. At
that time, the highest temperature occurs in the middle of the
rod,𝑇𝑥(𝑥 = 𝐿/2) = 11650𝐾. It can also be seen from Figure 4
that the temperature distribution field along the length of the
rod under study has a parabolic character.

The laws of distribution of the three component defor-
mations are shown in Figure 5. Here, the distribution field
of the temperature component of deformation @𝑇(𝑥) has
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Figure 6: Stress Dependencies along the length of the rod. (1) Law
distribution of temperature component of stresses 𝜎𝑇(𝑥); (2) law
distribution of thermoelastic component of stresses 𝜎(𝑥); (3) law
distribution of elastic component of stresses 𝜎𝑥(𝑥).

a compressive character along the entire length of the rod
under study. It has a parabolic shape with a bulge down.
Its value at the ends of the investigated rod will be @𝑇(𝑥 =0) = @𝑇(𝑥 = 𝐿) = −0.0675. At the time in the middle
of the rod, it has @𝑇(𝑥 = 𝐿/2) = −0.014562. This shows
that in the middle of the rod the temperature component of
the deformation will be 2.157 times greater than that at the
end of the rod. At that time, the value of the thermoelastic
component of deformations @ (𝑥) will be constant along the
length of the rod and @ (𝑥) = −0.0112. The behavior of
the elastic component of deformation will be of alternating
sign. For example, in the middle part of the rod, where the
heat flux is supplied, the elastic component of deformation
@ (𝑥) has a tensile character. Amplitude @𝑥 (𝑥 = 𝐿/2) =−0.033. At that time, the first and last 1/3 of the rod will
experience compressive 𝜀𝑥(𝑥). It should be noted that at the
ends of the rod @𝑥(𝑥 = 0) = @𝑥(𝑥 = 𝐿) = −0.0045. In
general, the distribution field @𝑥(𝑥) has a parabolic character,
convex at the top. In the relevant generalized Hooke’s law, the
behavior of the stress components will be appropriate for the
corresponding component strain (Figure 6).

The values of the thermoelastic component of stress 𝜎(𝑥)
along the entire length of the rod will be constant 𝜎(x) =−22528kG/cm2. However, the law of distribution of the
temperature component of voltage𝜎𝑇(𝑥)will have a parabolic
character, bulge down, and it will have a compressive char-
acter along the entire length of the rod. The values of 𝜎𝑇(𝑥)
at the ends of the rod will be 𝜎T(x = 0) = 𝜎T(x = L) =−13500kG/cm2. At that time in the middle of the rod 𝜎T(x =
L/2) = −29125kG/cm2 . This shows that in the middle of the
bar the value of 𝜎𝑇 will be 2.157 times more than that at its
ends. The elastic component of stress 𝜎𝑥(𝑥) in the first and
last 1/3 of the rod behaves as compressive, and in the middle
1/3 as tensile. With this

𝜎𝑥 (𝑥 = 0) = 𝜎𝑥 (𝑥 = 𝐿) = −9027 𝑘𝐺/𝑐𝑚2,
𝜎𝑥 (𝑥 = 𝐿

2 ) = 6597 𝑘𝐺/𝑐𝑚2. (37)
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Figure 7: Dependence of displacement along the length of the rod.

The distribution law of the displacement of the rod
sections is not shown in Figure 7. From this figure, it is
clear that all sections of the left half of the rod are moved
against the direction of the axis ox, and sections of the
right half are shifted in the direction of the axis of the oh.
This process is due to the presence on the surface of the
middle 1/3 of the investigated rod summed heat flux. At that
time, the amplitude of the displacement of the section whose
coordinate x =7.5 cmwill be equal toU=(x=7.5)= - 0.01627 cm.
Similarly, we have that U=(x=22.5)=0.01627 cm. This shows
that the process under study is strictly symmetric about the
middle of the rod.

5. Conclusion

The developed method based on the fundamental laws
of energy conservation, a computational algorithm, and
an application program in Python allows automating the
construction of resolving systems of equations taking into
account the natural boundary conditions for rods of limited
length under the influence of dissimilar types of heat sources.
The developed system also allows determining the laws of
temperature distribution, all components of deformations
and stresses, and displacements. In this regard, it can be stated
that the developed method, algorithm, and Python programs
are relatively universal in the sense of studying the steady
thermo-stress-strain state of the supporting core elements of
strategic equipment under the influence of various local heat
sources. In this case, the obtained numerical results will differ
in high accuracy, since these results satisfy the fundamental
laws of energy conservation.
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