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The investigation of wave propagation in elastic medium with thermomechanical effects is bound to have important economic
implications in the field of composite materials, seismology, geophysics, and so on. In this article, thermoelastic wave propagation
in anisotropic mediums of orthorhombic and hexagonal syngony having heterogeneity along 𝑧-axis is studied. Such medium has
second-order axis symmetry. By using analytical matriciant method, a set of equations of motions in thermoelastic medium are
reduced to an equivalent set of the first-order differential equations. In the general case, for the given set of equations, structures of
fundamental solutions are made and dispersion relations are obtained.

1. Introduction

The interaction between thermal and mechanical fields in
solid bodies is studied by dynamical theory of thermoelas-
ticity. This study has vast application in different branches of
engineering, such as earthquake engineering, soil mechanics,
aeronautics, and nuclear reactors.

The theory of classical thermoelasticity [1–6] is based
on the supposition of heat conduction law proposed by
Fourier, in which the temperature distribution is governed
by a parabolic-type partial differential equation. According
to this law a thermal perturbation is instantaneously felt
everywhere inside a body. But physically it is unrealistic
specifically in case of short-time responses. In order to take
into account this discrepancy, generalized thermoelasticity
has been developed based on modified Fourier law, in which
the temperature distribution is governed by a hyperbolic-
type equation; consequently the heat transfer in solids is
considered as a wave phenomenon instead of a diffusion
phenomenon.

In order to analytically investigate the propagation of
wave in anisotropic inhomogeneous medium a novel matri-
ciant method has been developed. The method of matriciant

allows studying wave propagation in anisotropic medium
with various mechanical and physical properties [7].

The structures of matriciant for propagation of waves
in infinite and finite periodical inhomogeneous media are
investigated in various studies.

Verma analytically investigated problem propagation of
thermoelastic wave along arbitrary direction in a heat con-
ducting plate by employing the normal mode expansion
method, available in generalized theory of thermoelasticity
having single thermal relaxation time [8].

By combiningmatriciantmethod with linear transforma-
tion formation, the interaction between free harmonic waves
and multilayered media is studied [9]. The solutions so ob-
tained give dispersion characteristics of multilayered media.

Thematriciant method has also been employed to analyt-
ically investigate the problems of reflection and refraction of
waves on the interface of homogenous anisotropic thermoe-
lastic mediums [10].

2. A Matriciant Method

Nowadays the solution of wide range of theoretical and
applied problems in continuum dynamics requires more
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Table 1

Crystal system Characteristic symmetry Syngony Unit cell parameters Independent parameters
Triclinic 1x 1-fold -1 𝑎 ̸= 𝑏 ̸= 𝑐; 𝛼 ̸= 𝛽 ̸= 𝛾 6
Monoclinic 1x 2-fold 2/m 𝑎 ̸= 𝑏 ̸= 𝑐; 𝛼 = 𝛾 = 90∘; 𝛽 ̸= 90∘ 4
Orthorhombic 3x 2-fold mmm 𝑎 ̸= 𝑏 ̸= 𝑐; 𝛼 = 𝛽 = 𝛾 = 90∘ 3
Tetragonal 1x 4-fold 4/mmm 𝑎 = 𝑏 ̸= 𝑐; 𝛼 = 𝛽 = 𝛾 = 90∘ 2

Trigonal 1x 3-fold 6/mmm (P) 𝑎 = 𝑏 ̸= 𝑐; 𝛼 = 𝛽 = 90∘; 𝛾 = 120∘ 2
-3m (R)

Hexagonal 1x 6-fold 6/mmm 𝑎 = 𝑏 ̸= 𝑐; 𝛼 = 𝛽 = 90∘; 𝛾 = 120∘ 2
Cubic 4x 3-fold m-3m 𝑎 = 𝑏 = 𝑐; 𝛼 = 𝛽 = 𝛾 = 90∘ 1

thorough consideration of anisotropy and physical and
mechanical properties. The main issue that appears in ana-
lyzing wave propagation in anisotropic medium is inapplica-
bility of physical interpretations and mathematical methods
developed for isotropic medium. The main reason is that it
is not possible to separate waves into forward and backward
moving waves. In addition, another difficulty is an existence
of a lot of physical parameters.

The analytical investigation for the wave propagation is
based on developing matrix techniques.

Themain idea is to deduce initial equations of the contin-
uous medium and equations describing wave propagation in
medium; then by employing separation of variables method
(solutions are represented as plane waves) these equations
reduced to the equivalent set of ordinary differential equa-
tions with variable coefficients; the solutions so obtained are
represented by plane waves. After that, the structure of a
matriciant is built.

The advantage of a matriciant method is that it equally
describes the wave propagation in the presence of one or
several physical effects, such as thermoelastic, magnetoelas-
tic, and piezoelastic andmagnetoelectric, piezomagnetic, and
magnetoelectric effects.

The structures of equations of motion in inhomogeneous
medium are already defined [11–13]. In this way great ana-
lytical tools have been developed for the investigation of
wave propagation behavior in inhomogeneous anisotropic
medium.

3. The Concept of Syngony

Syngony is the crystallographic division of crystals based on
unit cell configuration. It is the relation between the edges𝑎, 𝑏, 𝑐 of a cell and angles 𝛼, 𝛽, 𝛾 between them. Being an
important classification division in symmetry of crystals,
each syngony includes several point symmetry groups, Bra-
vais lattices, and spatial symmetry groups.

Combining a lattice with the different orders of rotation
symmetry leads to the seven possible crystal systems. The
lattices of the seven crystal systems consist of an infinite array
of identical points each with an identical environment. The
point symmetry of this environment is known as the syngony
of the lattice.

Seven possible syngonies that describe 7 crystal systems
are shown in Table 1 [14].

4. The Matrix Formulation of Thermoelastic
Waves Propagation

The simultaneous solution of equations of motion provides
a way to study the thermoelastic wave propagation in
anisotropic medium.These equations are written as𝜎𝑖𝑗,𝑗 = 𝜌𝑈̈𝑖 (1)𝜆𝑖𝑗 𝜕𝜃𝜕𝑥𝑗 = −𝑞𝑖 (2)𝜕𝑞𝑖𝜕𝑥𝑖 = −𝑖𝜔𝛽𝑖𝑗𝜀𝑖𝑗 − 𝑖𝜔 𝑐𝜀𝑇0 𝜃, (3)

where 𝜎𝑖𝑗 represents the components of stress tensor,𝜌 is density of the medium, 𝜆𝑖𝑗 shows the components of
thermal conductivity tensor, 𝑞𝑖 represents the components
of heat flow vector, 𝜔 is the angular frequency, 𝛽𝑖𝑗 are
thermomechanical constants, 𝛽𝑖𝑗 = 𝛽𝑗𝑖, 𝜀𝑖𝑗 is the strain tensor,𝑐𝜀 is specific heat at constant strain, and 𝜃 = 𝑇−𝑇0 is increase
in temperature, when deformation is small |𝜃/𝑇0|71.

Duhamel-Neumann relation relates the physical and
mechanical quantities by𝜎𝑖𝑗 = 𝑐𝑖𝑗𝑘𝑙𝜀𝑘𝑙 − 𝛽𝑖𝑗𝜃. (4)

Here 𝑐𝑖𝑗 are the elastic parameters, 𝑐𝑖𝑗𝑘𝑙 = 𝑐𝑗𝑖𝑘𝑙 = 𝑐𝑖𝑗𝑙𝑘 = 𝑐𝑘𝑙𝑖𝑗,
and 𝜀𝑘𝑙 is the Cauchy tensor for small deformations.

Equations (1)–(4) express relation between temperature
and mechanical stress produced in the process; it is also
function of the thermal field and deformation, considering
them as independent variables.

Thus, equations (1)–(4) constitute a closed system of
thermoelasticity equations, which describes the propagation
of thermoelastic waves.

Based on themethod of separation of variables in the case
of a harmonic function of time[𝑈𝑖 (𝑥, 𝑦, 𝑧, 𝑡) ; 𝜎𝑖𝑗 (𝑥, 𝑦, 𝑧, 𝑡) ; 𝜃; 𝑞𝑧]= [𝑈𝑖 (𝑧) , 𝜎𝑖𝑗 (𝑧) , 𝜃; 𝑞𝑧] 𝑒𝑖(𝜔𝑡−𝑚𝑥−𝑛𝑦). (5)
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Figure 1: The coordinate system of the question of the wave propagation along the 𝑧-axis.
The system of equations (1)–(4) is reduced to a system of

differential equations of first order with variable coefficients
which describes the propagation of harmonic waves:

𝑑󳨀→𝑊𝑑𝑧 = 𝐵󳨀→𝑊. (6)

Here 𝐵 = 𝐵⌊𝑐𝑖𝑗𝑘𝑙(𝑧), 𝛽𝑖𝑗(𝑧), 𝜔,𝑚, 𝑛⌋ is coefficient matrix
whose elements contain the information regarding the ther-
moelastic wave propagation in the medium and 𝑚 and 𝑛
represent the 𝑥 and 𝑦 components of the wave vector 𝜅,
respectively.

The boundary condition column vector 󳨀→𝑊 has the form󳨀→𝑊(𝑥, 𝑦, 𝑧, 𝑡)= [𝑢𝑧 (𝑧) , 𝜎𝑧𝑧, 𝑢𝑥 (𝑧) , 𝜎𝑥𝑧, 𝑢𝑦 (𝑧) , 𝜎𝑦𝑧, 𝜃, 𝑞𝑧]𝑡⋅ exp (𝑖𝜔𝑡 − 𝑖𝑚𝑥 − 𝑖𝑛𝑦) , (7)

where “𝑡” indicates the transpose of the vector.
Figure 1 schematically shows the unit cell of the crystal.

A Cartesian coordinate system is shown in which the hetero-
geneity of the medium is assumed along the 𝑧-axis. Here 𝑈𝑥,𝑈𝑦 are the components of the displacement vectorU and 𝑘 is
the wave vector.

For such case, in constructing the coefficient matrix, 𝐵 is
used as a representation of the solution (5), the systems of
equations (1)–(4) are in the derivatives along the coordinate𝑍, and the excluded components of the stress tensor are
not incorporated in the boundary conditions. The multiplier
exp(𝑖𝜔𝑡 − 𝑖𝑚𝑥 − 𝑖𝑛𝑦) is omitted throughout.

Let us consider the construction of the set of first-order
differential equations (6) for tetragonal syngony of classes
4, 4, 4/m, which are described by fourfold axis symmetry
parallel to 𝑧-axis. Seven elastic and three thermomechanical
parameters are present in this case.

We consider that 𝜕𝑓𝜕𝑧 󳨀→ 𝑑𝑓𝑑𝑧 ,𝜕𝑓𝜕𝑥 󳨀→ −𝑖𝑘𝑥𝑓,

𝜕𝑓𝜕𝑦 󳨀→ −𝑖𝑘𝑦𝑓,𝜕𝑓𝜕𝑡 󳨀→ 𝑖𝜔𝑓,𝑚 = 𝑘𝑥,𝑛 = 𝑘𝑦.
(8)

For tetragonal syngony (classes 4, 4, 4/m) Duhamel-
Neumann expression (4) can be written in matrix form as [6]

(((((
(

𝜎𝑥𝑥𝜎𝑦𝑦𝜎𝑧𝑧𝜎𝑦𝑧𝜎𝑥𝑧𝜎𝑥𝑦
)))))
)

=(((((
(

𝑐11 𝑐12 𝑐13 0 0 𝑐16𝑐12 𝑐11 𝑐13 0 0 −𝑐16𝑐13 𝑐13 𝑐33 0 0 00 0 0 𝑐44 0 00 0 0 0 𝑐44 0𝑐16 −𝑐16 0 0 0 𝑐66
)))))
)
(((((
(

𝜀1𝜀2𝜀3𝜀4𝜀5𝜀6
)))))
)

−(((((
(

𝛽11 0 𝛽130 𝛽11 𝛽13𝛽13 𝛽13 𝛽330 0 00 0 00 0 0
)))))
)
𝜃.

(4)󸀠

In (4) the following notations are used:𝜀1 = 𝜀11 = 𝑈1,1 = 𝜕𝑈𝑥𝜕𝑥 ,𝜀2 = 𝜀22 = 𝑈2,2 = 𝜕𝑈𝑦𝜕𝑦 ,
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𝜀3 = 𝜀33 = 𝑈3,3 = 𝜕𝑈𝑧𝜕𝑧𝜀4 = 2𝜀23 = 𝑈2,3 + 𝑈3,2 = 𝜕𝑈𝑦𝜕𝑧 + 𝜕𝑈𝑧𝜕𝑦 ,𝜀5 = 2𝜀21 = 𝑈1,3 + 𝑈3,1 = 𝜕𝑈𝑥𝜕𝑧 + 𝜕𝑈𝑧𝜕𝑥 ,𝜀6 = 2𝜀12 = 𝑈1,2 + 𝑈2,1 = 𝜕𝑈𝑥𝜕𝑦 + 𝜕𝑈𝑦𝜕𝑥 .
(9)

Components of themechanical stress tensor inDuhamel-
Neumann expression, for the given class of crystals, will take
the following form:𝜎𝑥𝑥 = −𝑐11𝑖𝑚𝑈𝑥 − 𝑐12𝑖𝑛𝑈𝑦 + 𝑐13 𝑑𝑈𝑧𝑑𝑍− 𝑐16 (𝑖𝑛𝑈𝑥 + 𝑖𝑚𝑈𝑦) − (𝛽11 + 𝛽13) 𝜃𝜎𝑦𝑦 = −𝑐12𝑖𝑚𝑈𝑥 − 𝑐11𝑖𝑛𝑈𝑦 + 𝑐13 𝑑𝑈𝑧𝑑𝑍+ 𝑐16 (𝑖𝑛𝑈𝑥 + 𝑖𝑚𝑈𝑦) − (𝛽11 + 𝛽13) 𝜃𝜎𝑧𝑧 = −𝑐13𝑖𝑚𝑈𝑥 − 𝑐13𝑖𝑛𝑈𝑦 + 𝑐33 𝑑𝑈𝑧𝑑𝑍 − (2𝛽13 + 𝛽33) 𝜃𝜎𝑦𝑧 = 𝑐44 (𝑑𝑈𝑦𝑑𝑍 − 𝑖𝑛𝑈𝑧)𝜎𝑥𝑧 = 𝑐44 (𝑑𝑈𝑥𝑑𝑍 − 𝑖𝑚𝑈𝑧)𝜎𝑥𝑦 = 𝑐16𝑖𝑛𝑈𝑦 − 𝑐16𝑖𝑚𝑈𝑥 − 𝑐66 (𝑖𝑛𝑈𝑥 + 𝑖𝑚𝑈𝑦) .

(10)

The following notations are introduced for relationship (10):𝜀1 = 𝜀11 = 𝑈1,1,𝑆2 = 𝜀22 = 𝑈2,2,𝑆3 = 𝜀33 = 𝑈3,3𝑆4 = 2𝜀23 = 𝑈2,3 + 𝑈3,2,𝑆5 = 2𝜀21 = 𝑈1,3 + 𝑈3,1,𝑆6 = 2𝜀12 = 𝑈1,2 + 𝑈2,1.
(11)

From (10) let us express derivatives of the displacement vector󳨀→𝑈 with respect to 𝑧 component:𝑑𝑈𝑧𝑑𝑍 = 1𝑐33 𝜎𝑧𝑧 + 𝑐13𝑐33 𝑖𝑚𝑈𝑥 + 𝑐13𝑐33 𝑖𝑛𝑈𝑦 + 2𝛽13 + 𝛽33𝑐33 𝜃𝑑𝑈𝑦𝑑𝑍 = 1𝑐44 𝜎𝑦𝑧 + 𝑖𝑛𝑈𝑧𝑑𝑈𝑥𝑑𝑍 = 1𝑐44 𝜎𝑧𝑥 + 𝑖𝑚𝑈𝑧.
(12)

From (1), and also taking into account (10), we can get the
following relationships:𝑑𝜎𝑥𝑧𝑑𝑍= 𝑐13𝑐33 𝑖𝑚𝜎𝑧𝑧+ [−𝜌𝜔2 + 𝑚2 (𝑐11 − 𝑐213𝑐33) + 𝑐16𝑚𝑛 + 𝑐66𝑛2]𝑈𝑥+ [𝑚𝑛(𝑐12 + 𝑐66 − 𝑐13𝑐23𝑐33 ) + 𝑐16𝑛2]𝑈𝑦+ 𝑐13𝑐33 (2𝛽13 + 𝛽33) 𝑖𝑚𝜃𝑑𝜎𝑦𝑧𝑑𝑍= 𝑐13𝑐33 𝑖𝑛𝜎𝑧𝑧 + 𝑚𝑛[𝑐12 + 𝑐66 − 𝑐213𝑐33 ]𝑈𝑥+ (−𝜌𝜔2 + 𝑐66𝑚2 − 𝑐16𝑚𝑛 + (𝑐11 − 𝑐213𝑐33)𝑛2)𝑈𝑦+ 𝑐23𝑐33 (2𝛽13 + 𝛽33) 𝑖𝑛𝜃𝑑𝜎𝑧𝑧𝑑𝑍 = −𝜌𝜔2𝑈𝑧 + 𝑖𝑚𝜎𝑥𝑧 + 𝑖𝑛𝜎𝑦𝑧.

(13)

Fourier thermal conductivity equation (2) for anisotropic
medium in the component form can be written as

−𝑞𝑥 = 𝜆11 𝜕𝜃𝜕𝑥 + 𝜆12 𝜕𝜃𝜕𝑦 + 𝜆13 𝜕𝜃𝜕𝑧−𝑞𝑦 = 𝜆12 𝜕𝜃𝜕𝑥 + 𝜆22 𝜕𝜃𝜕𝑦 + 𝜆23 𝜕𝜃𝜕𝑧−𝑞𝑧 = 𝜆13 𝜕𝜃𝜕𝑥 + 𝜆23 𝜕𝜃𝜕𝑦 + 𝜆33 𝜕𝜃𝜕𝑧 .
(2)󸀠

Given set in a matrix form is

(−𝑞𝑥−𝑞𝑦−𝑞𝑧) = (
𝜆11 𝜆12 𝜆13𝜆12 𝜆22 𝜆23𝜆13 𝜆23 𝜆33)(

−𝑖𝑚𝜃−𝑖𝑛𝜃𝑑𝜃𝑑𝑧 ) . (2)󸀠󸀠
Consequently, from (2) we get equation for 𝑑𝜃/𝑑𝑧:𝑑𝜃𝑑𝑧 = − 1𝜆33 𝑞𝑧 + (𝜆13𝜆33 𝑖𝑚 + 𝜆23𝜆33 𝑖𝑛) 𝜃. (14)
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From the heat input equation (3) with relationships (2)󸀠, (14),
and first equation of (12), we get the following relationship:

𝑑𝑞𝑧𝑑𝑍 = −𝑖𝜔2𝛽13 + 𝛽33𝑐33 𝜎𝑧𝑧 + 𝜔𝑚𝑐13𝑐33 (2𝛽13 + 𝛽33) 𝑈𝑥+ 𝜔𝑛𝑐23𝑐33 (2𝛽13 + 𝛽33) 𝑈𝑦 − 𝑖𝜔( 𝑐𝜀𝑇0 + 𝛽233𝑐11 )𝜃+ (𝜆13𝜆33 𝑖𝑚 + 𝜆23𝜆33 𝑖𝑛) 𝑞𝑧.
(15)

As a result, for the tetragonal syngony of 4, 4, 4/m
classes in case of thermoelastic waves propagation the set of
differential equations of the first order takes the following
form:

𝑑𝑈𝑧𝑑𝑍 = 1𝑐33 𝜎𝑧𝑧 + 𝑐13𝑐33 𝑖𝑚𝑈𝑥 + 𝑐13𝑐33 𝑖𝑛𝑈𝑦 + 2𝛽13 + 𝛽33𝑐33 𝜃𝑑𝜎𝑧𝑧𝑑𝑍 = −𝜌𝜔2𝑈𝑧 + 𝑖𝑚𝜎𝑥𝑧 + 𝑖𝑛𝜎𝑦𝑧𝑑𝑈𝑥𝑑𝑍 = 1𝑐44 𝜎𝑧𝑥 + 𝑖𝑚𝑈𝑧𝑑𝜎𝑥𝑧𝑑𝑍= 𝑐13𝑐33 𝑖𝑚𝜎𝑧𝑧+ [−𝜌𝜔2 + 𝑚2 (𝑐11 − 𝑐213𝑐33) + 𝑐16𝑚𝑛 + 𝑐66𝑛2]𝑈𝑥+ [𝑚𝑛(𝑐12 + 𝑐66 − 𝑐13𝑐23𝑐33 ) + 𝑐16𝑛2]𝑈𝑦+ 𝑐13𝑐33 (2𝛽13 + 𝛽33) 𝑖𝑚𝜃𝑑𝑈𝑦𝑑𝑍 = 1𝑐44 𝜎𝑦𝑧 + 𝑖𝑛𝑈𝑧𝑑𝜎𝑦𝑧𝑑𝑍= 𝑐13𝑐33 𝑖𝑛𝜎𝑧𝑧 + 𝑚𝑛[𝑐12 + 𝑐66 − 𝑐213𝑐33 ]𝑈𝑥+ (−𝜌𝜔2 + 𝑐66𝑚2 − 𝑐16𝑚𝑛 + (𝑐11 − 𝑐213𝑐33)𝑛2)𝑈𝑦+ 𝑐23𝑐33 (2𝛽13 + 𝛽33) 𝑖𝑛𝜃𝑑𝜃𝑑𝑧 = − 1𝜆33 𝑞𝑧 + (𝜆13𝜆33 𝑖𝑚 + 𝜆23𝜆33 𝑖𝑛) 𝜃

𝑑𝑞𝑧𝑑𝑍= −𝑖𝜔2𝛽13 + 𝛽33𝑐33 𝜎𝑧𝑧 + 𝜔𝑚𝑐13𝑐33 (2𝛽13 + 𝛽33) 𝑈𝑥+ 𝜔𝑛𝑐23𝑐33 (2𝛽13 + 𝛽33) 𝑈𝑦 − 𝑖𝜔( 𝑐𝜀𝑇0 + 𝛽233𝑐11 )𝜃+ (𝜆13𝜆33 𝑖𝑚 + 𝜆23𝜆33 𝑖𝑛) 𝑞𝑧. (6)󸀠
From this set of equations (6)󸀠 the expression for the

coefficient of matrix 𝐵 can be derived.
The structures of the matrix 𝐵 and column vector 𝑊

boundary condition in case of bulk orthorhombic, hexagonal,
and tetragonal crystal system having second-order axis of
symmetry and heterogeneity along the 𝑧-axis are given by𝐵

=
[[[[[[[[[[[[[[[[[[

0 𝑏12 𝑏13 0 𝑏15 0 𝑏17 0𝑏21 0 0 𝑏24 0 𝑏26 0 0𝑏24 0 0 𝑏34 0 0 0 00 𝑏13 𝑏43 0 𝑏45 0 𝑏47 0𝑏26 0 0 0 0 𝑏56 0 00 𝑏15 𝑏45 0 𝑏65 0 𝑏67 00 0 0 0 0 0 0 𝑏780 −𝑖𝜔𝑏17 −𝑖𝜔𝑏47 0 −𝑖𝜔𝑏67 0 𝑏87 0

]]]]]]]]]]]]]]]]]]
;

󳨀→𝑊 =
(((((((((((
(

𝑢𝑧𝜎𝑧𝑧𝑢𝑥𝜎𝑥𝑧𝑢𝑦𝜎𝑦𝑧𝜃𝑞𝑧

)))))))))))
)
.

(16)

From the structure of the coefficient matrix as given in
(16) it is revealed that, in the spatial case, the elastic waves of
different polarization and the heat wave are interrelated.

The nonzero elements 𝑏13, 𝑏24 of the matrix 𝐵 determine
the mutual transformation of longitudinal and transverse
waves polarized along 𝑥-axis, whereas elements 𝑏15, 𝑏26
describe the relationship between transverse waves polarized
along 𝑦-axis and longitudinal wave. Nonzero element 𝑏45
defines the mutual transformation between the waves of
transverse polarization.

The fact that 𝑏17 = 2𝛽13 + 𝛽33𝑐33 (17)
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means that the longitudinal wave is generated due to ther-
moelastic effect.

Nonzero elements 𝑏47 and 𝑏67 given as𝑏47 = 𝑐13𝑐33 (2𝛽13 + 𝛽33) 𝑖𝑚;𝑏67 = 𝑐23𝑐33 (2𝛽13 + 𝛽33) 𝑖𝑛 (18)

indicate the effect of transversely polarized elastic wave on
thermoelastic effect, whereas the effect of thermoelasticity on
elastic shear wave having X-polarization is described by 𝑏47,
while the effect of thermoelasticity on transverse polarized
wave is given by 𝑏67.

Similarly, for the thermoelastic waves propagating in an
anisotropicmediumof cubic symmetry the coefficientmatrix
is constructed for the bulk case and the analysis of matrix
coefficients has been carried out.We also obtain the structure
of the coefficient matrix in the case of thermoelastic waves
propagation in anisotropic media, orthorhombic, tetragonal,
hexagonal, and cubic crystal systems.

5. Structure of Matriciant

Normalized solution of (6) is called matriciant. Any other
solution that has meaning of the matrix of fundamental
solutions has the following form [15, 16]:𝑋 = 𝑇̂ (𝑧0, 𝑧) 𝐶, (19)

where 𝑇̂(𝑧0, 𝑧) represents matriciant and 𝐶 shows some
constant matrix.

Set of equations (6) can be written as󳨀→𝑊 = 𝑇̂󳨀→𝑊0, (20)

where 𝑇 is matrix of fundamental solutions and 󳨀→𝑊0 is
boundary condition vector, defined by conditions at 𝑧 = 𝑧0;
then 𝑑󳨀→𝑊0𝑑𝑧 = 𝑑𝑇̂𝑑𝑧 󳨀→𝑊0 = 𝐵𝑇̂󳨀→𝑊0. (21)

Consequently, as a result of 󳨀→𝑊0 being an arbitrary vector,
the matriciant satisfies equation (6):𝑑𝑇̂𝑑𝑧 = 𝐵𝑇̂. (22)

Normalized solution of (6) can bemade by the method of
successive approximations from the recurrence relations:𝑑𝑇̂𝑘𝑑𝑧 = 𝐵𝑇̂𝑘−1. (23)

Assuming that 𝑇̂𝑘(𝑧0) = 𝐸 (𝑘 = 0, 1, 2, . . .) for 𝑇̂𝑘 we get𝑇̂𝑘 = 𝐸 + ∫𝑧
𝑧0

𝐵 (𝑧1) 𝑇̂𝑘−1 (𝑧1) 𝑑𝑧1. (24)

Consequently, we get𝑇0 = 𝐸,𝑇1 = 𝐸 + ∫𝑧
𝑧0

𝐵 (𝑧1) 𝑑𝑧1𝑇2 = 𝐸 + ∫𝑧
𝑧0

𝐵 (𝑧1) 𝑑𝑧1 + ∫𝑧
𝑧0

∫𝑧1
𝑧0

𝐵 (𝑧1) 𝐵 (𝑧2) 𝑑𝑧1𝑑𝑧2+ ⋅ ⋅ ⋅ .
(25)

In (25)
:𝑇 is represented in the form of infinite matrix

series:𝑇 = 𝐸 + ∫𝑧
0
𝐵𝑑𝑧1 + ∫𝑧

0
∫𝑧1
0
𝐵 (𝑧1) 𝐵 (𝑧2) 𝑑𝑧1𝑑𝑧2+ ⋅ ⋅ ⋅ . (26)

For thematriciant, the following relations are satisfied [9]:

(1) 𝑇(𝑧0, 𝑧) = 𝑇(𝑧1, 𝑧)𝑇(𝑧0, 𝑧1).
(2) ln|𝑇(𝑧0, 𝑧)| = ∫𝑧𝑧0 𝑠𝑝𝐵(𝑧1)𝑑𝑧1.
(3) If 𝐵 = 𝐵0 which represents a constantmatrix, to 𝑇0 =

exp[𝐵0(𝑧 − 𝑧0)].
(4) 𝑑𝑇−1/𝑑𝑧 = −𝑇−1𝐵.
The fourth property of thematriciant gives representation

in the form of infinite matrix series for the inversematriciant.
Assuming the same as we did to get (26)𝑇−10 = 𝐸,𝑇−1𝑘 = 𝐸 − ∫𝑧

𝑧0

𝑇𝑘−1 (𝑧1) 𝐵 (𝑧1) 𝑑𝑧1 (27)

we have 𝑇−11 = 𝐸 − ∫𝑧
𝑧0

𝐵 (𝑧1) 𝑑𝑧1𝑇−12 = 𝐸 − ∫𝑧
𝑧0

𝐵 (𝑧1) 𝑑𝑧1+ ∫𝑧
𝑧0

∫𝑧1
𝑧0

𝐵 (𝑧2) 𝐵 (𝑧1) 𝑑𝑧1𝑑𝑧2,
(28)

from which the desired form of 𝑇−1 is obtained and given as𝑇−1 = 𝐸 − ∫𝑧
0
𝐵𝑑𝑧1 + ∫𝑧

0
∫𝑧1
0
𝐵 (𝑧2) 𝐵 (𝑧1) 𝑑𝑧1𝑑𝑧2− ⋅ ⋅ ⋅ . (29)

Both series converge on (26) and (29) absolutely and
uniformly on any finite interval in which the elements of the
matrix 𝐵 (𝑧) are continuous.

Let 𝑔 (𝑧) = max 󵄨󵄨󵄨󵄨󵄨𝑏𝑖𝑗󵄨󵄨󵄨󵄨󵄨 ,ℎ (𝑧) = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫𝑧𝑧0 𝑔 (𝑧) 𝑑𝑧󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (30)
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Each of 𝑛2 scalar series is dominated by the series

1 + ℎ (𝑧) + 𝑛ℎ22! + 𝑛2ℎ23! . (31)

Matrix series (26) and (29) is the sum of matrices

𝑇 = ∞∑
𝑛=0

𝑇(𝑛),
𝑇−1 = ∞∑

𝑛=0

𝑇−1(𝑛). (32)

Index (𝑛) coincides with the number of matrices 𝐵(𝑧𝑖)
multiplied in the integrand.

In this case, formation of the matriciant structure is to set
relation between elements of 𝑇 and 𝑇−1.

In this case, the relation𝑇𝑇−1 = 𝑇−1𝑇 = 𝐸. (33)

Building structure of matriciant establishes relationship
between elements of the direct and inverse matrices 𝑇 and𝑇−1 based on comparison of their piecemeal approach.

Endless rows of the matrix can be written as𝑇 = 𝑇ℓ + 𝑇𝑜,𝑇−1 = 𝑇−1ℓ − 𝑇−1𝑜 , (34)

where 𝑇±𝑒,𝑜 is the sum of even and odd rows (26) and (29).
By induction we prove that the structure of 𝑇−1 (2𝑛) and𝑇−1 (2𝑛 + 1) is stored for each 𝑛.
Structure matriciant, in the case of propagation of ther-

moelastic waves in cubic, hexagonal, and orthorhombic
crystal systems in the bulk case, is defined as𝑇−1

=
(((((((((((
(

𝑡22 −𝑡12 −𝑡42 𝑡32 −𝑡62 𝑡52 −𝑡82 𝑡72−𝑡21 𝑡11 𝑡41 −𝑡31 𝑡61 −𝑡51 𝑡81 −𝑡71−𝑡24 𝑡14 𝑡44 −𝑡34 𝑡64 −𝑡54 𝑡84 −𝑡74𝑡23 −𝑡13 −𝑡43 𝑡33 −𝑡63 𝑡53 −𝑡83 𝑡73−𝑡26 𝑡16 𝑡46 −𝑡36 𝑡66 −𝑡56 𝑡86 −𝑡76𝑡25 −𝑡15 −𝑡45 𝑡35 −𝑡65 𝑡55 −𝑡85 𝑡75−𝑡28 𝑡18 𝑡48 −𝑡38 𝑡68 −𝑡58 𝑡88 −𝑡78𝑡27 −𝑡17 −𝑡47 𝑡37 −𝑡67 𝑡57 −𝑡87 −𝑡77

)))))))))))
)
. (35)

Elements 𝑡𝑖𝑗 of matriciant 𝑇−1 are elements of direct matri-
ciant 𝑇.

We obtain the structure of the matriciant representing
thermoelastic waves propagation in these classes in the 𝑋𝑍
and 𝑌𝑍 plane, respectively.

In one case (propagation along the 𝑧-axis (𝑚 = 0, 𝑛 = 0)),
structure (35) takes the following form:

𝑇−1 =( 𝑡22 −𝑡12 −𝑡82 𝑡72−𝑡21 𝑡11 𝑡81 −𝑡71−𝑡28 𝑡18 𝑡88 −𝑡78𝑡27 −𝑡17 −𝑡87 𝑡77);
𝑇−1 = ( 𝑡44 −𝑡34−𝑡43 𝑡33 ) ;𝑇−1 = ( 𝑡66 −𝑡56−𝑡65 𝑡55 ) .

(36)

Building matriciant structures, in this case, is basically
making the relationships between elements of the direct and
inverse matrices 𝑇 and 𝑇−1 based on comparison of their
piecemeal approach.

Decomposition of the structure of (8 × 8) matrix as given
in (35) into a (4 × 4) matrix and two (2 × 2) matrix means
the independence of the elastic longitudinal wave with a
thermal effect and the elastic shear wave. At the same time,
the elastic shear waves, with one-dimensional propagation
in anisotropic media, cubic, hexagonal, and orthorhombic
crystal systems, along the symmetry axis of even order are
also obtained without the thermoelastic effect.

6. Dispersion Equations for the Elastic and
Thermoelastic Anisotropic Mediums

The main characteristics that determine the patterns of
propagation of wave in an unbounded periodic structure
are dispersion equations. The dispersion relations are the
following relationships: ] = ](𝜔), 𝜅 = 𝜅(𝜔), 𝜔 = 𝜔(𝜅), and𝜔 = 𝜔(]), where ] is the speed, 𝜔 is the cyclic frequency,
and 𝜅 is wave vector. In the particular case we obtain
the dependence 𝜅 = 𝜅(𝜔). The resulting structure being
higher than matriciant allows one to modify the condition of
existence of nontrivial solutions and to lower twice the degree
of the characteristic equation.

It follows from Bloch’s theorem that when periodic
inhomogeneity is present, 󳨀→𝑊 vector can have the form󳨀→𝑊(ℎ) = 𝑒𝑖𝑘̃ℎ󳨀→𝑊(0) , (37)

where 󳨀→𝑊 is column vector which is a solution to the set of
equations (6).

On the other hand, using monodromymatrix (i.e., matri-
ciant of (6) for one period) we have󳨀→𝑊(ℎ) = 𝑇̂󳨀→𝑊(0) . (38)
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Combining (37) and (38), we get(𝑇̂ − 𝑒𝑖𝑘ℎ𝐸)󳨀→𝑊(0) = 0. (39)

From now on, 𝐸 will represent identity matrix. From the
condition

det [𝑇 − 𝑒𝑖𝑘ℎ𝐸] = 0 (40)

follows secular equation, whose roots define desired disper-
sion equations.

Let us multiply (39) and 𝑇−1𝑒−𝑖𝑘̃ℎ. It is possible when
det𝑇 = 1 since |𝑒±𝑖𝑘ℎ| = 1. As a result, (39) takes the following
form: (𝑇−1 − 𝑒−𝑖󳨀→𝑘 ℎ)󳨀→𝑊(0) = 0. (41)

Relationships (39) and (41) are equivalent and they define
the same spectrum. Physically, this means that waves prop-
agate in opposite directions in the medium that has infinite
structure with the same dispersion pattern. Combining (39)
and (41), we obtain the next modified form for condition of
existence of nontrivial solutions

det [𝑝 − 𝐸 cos 𝑘̃ℎ] = 0, (42)

where 𝑝 = 12 [𝑇 + 𝑇−1] , (43)

and obtain the dispersion equation of thermoelastic waves
propagating in anisotropic media, cubic, hexagonal, and
orthorhombic crystal systems in the bulk case, having the
following form:

cos 𝑘̃1ℎ = −𝑎4 − 14√3 (√3 3√𝛾 + 3𝑎2 − 8𝑏 + 5 (𝑏2 − 3𝑎𝑐 + 12𝑑)
3√𝛾 )

− 15 (√− 3√𝛾 + 3𝑎2 − 8𝑏 + 2 (𝑏2 − 3𝑎𝑐 + 12𝑑)
3√𝛾 + 5 (𝑎3 − 4𝑏𝑎 + 8𝑐)3 3√𝛾 + 3𝑎2 − 8𝑏)

cos 𝑘̃2ℎ = −𝑎4 − 14 (√3 3√𝛾 + 3𝑎2 − 8𝑏 + 5 (𝑏2 − 3𝑎𝑐 + 12𝑑)
3√𝛾 )

+ 15 (√− 3√𝛾 + 3𝑎2 − 8𝑏 + 2 (𝑏2 − 3𝑎𝑐 + 12𝑑)
3√𝛾 + 5 (𝑎3 − 4𝑏𝑎 + 8𝑐)3 3√𝛾 + 3𝑎2 − 8𝑏)

cos 𝑘̃3ℎ = −𝑎4 + 14 (√3 3√𝛾 + 3𝑎2 − 8𝑏 + 5 (𝑏2 − 3𝑎𝑐 + 12𝑑)
3√𝛾 )

− 15 (√− 3√𝛾 + 3𝑎2 − 8𝑏 + 2 (𝑏2 − 3𝑎𝑐 + 12𝑑)
3√𝛾 + 5 (𝑎3 − 4𝑏𝑎 + 8𝑐)3 3√𝛾 + 3𝑎2 − 8𝑏)

cos 𝑘̃4ℎ = −𝑎4 + 14 (√3 3√𝛾 + 3𝑎2 − 8𝑏 + 5 (𝑏2 − 3𝑎𝑐 + 12𝑑)
3√𝛾 )

+ 15 (√− 3√𝛾 + 3𝑎2 − 8𝑏 + 2 (𝑏2 − 3𝑎𝑐 + 12𝑑)
3√𝛾 − 5 (𝑎3 − 4𝑏𝑎 + 8𝑐)3 3√𝛾 + 3𝑎2 − 8𝑏) ,

(44)
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where

𝛾 = 3√2𝑏3 − 9 (𝑎𝑐 + 8𝑑) 𝑏 + 27 (𝑐2 + 𝑎2𝑑) + √(2𝑏3 − 9 (𝑎𝑐 + 8𝑑) 𝑏 + 27 (𝑑𝑎2 + 𝑐2))2 − 4 (𝑏2 − 3𝑎𝑐 + 12𝑑)3. (45)

𝑎, 𝑏, 𝑐 show the elements of matrix (43).
These dispersion equations are obtained using the math-

ematical package Mathematica 8.0.
Knowledge of the monodromy matrix in an analytical

form allows obtaining matriciant of arbitrary periodic inho-
mogeneous layer.

If there are 𝑛 periods, sequence of equations is as follows:󳨀→𝑢 1 = 𝑇󳨀→𝑢 0,󳨀→𝑢 2 = 𝑇󳨀→𝑢 1, . . . , 󳨀→𝑢 𝑛 = 𝑇󳨀→𝑢 𝑛−1 (46)

which leads to 󳨀→𝑢 𝑛 = 𝑇𝑛󳨀→𝑢 0. (47)

Thus, calculating the matriciant for periodically inho-
mogeneous layer having 𝑛 periods is associated with the
calculation of 𝑛th power of the monodromy matrix.

The introduction of regular structures is important for the
matrix 𝑝 (43) which gives the recurrence relation:𝑇2 = 2𝑝𝑇 − 𝐸. (48)

Consistent application of (48) allows us to obtain 𝑇𝑛 as
follows: 𝑇𝑛 = 𝑃𝑛 (𝑝) 𝑇 − 𝑃𝑛−1 (𝑝) , (49)

where 𝑃𝑛(𝑝) represents matrix Chebyshev-Gegenbauer poly-
nomials.

7. Conclusion

In this paper, the thermoelastic wave propagation in
anisotropic mediums of orthorhombic and hexagonal syn-
gony has been analytically investigated by using matriciant
method. The system of first-order differential equation with
variable coefficients is constructed by using separation of
variable method. Coefficients matrix for all seven types of
anisotropic mediums for one-, two-, and three-dimensional
cases was obtained. The structure of fundamental solutions
in the form of system of first-order differential equations that
describes thermoelastic waves propagation in anisotropic
mediums for one-, two-, and three-dimensional cases was
formed. Variance equations of thermoelastic waves for
unlimited periodic structure were also obtained. For fourth-
order coefficients matrix, the problems of wave reflection and
refraction on the border of uniformanisotropic thermoelastic
mediums were solved analytically.
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