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Abstract: An important element of the operation of high-temperature aggregates are modes that
change over time. During these modes, maximum temperature changes are recorded in the cross-
section of the lining of the aggregate. The difference in temperature leads to the formation of thermal
stresses, which are the main reason for the repair of aggregates. During rapid heating, the inner
layers of the lining are subjected to compressive stresses, while during rapid cooling, these layers
experience tensile stresses. Under the same conditions, rapid cooling of the lining is more critical,
since refractories have poor resistance to tension. The purpose of the study is to calculate and analyze
the thermal stresses that arise during cooling of the casting ladle lining. The stresses are determined
based on the calculation of the unsteady temperature field of the lining. Thermal stress values are
necessary for analysis of the current cooling rates of casting ladles and subsequent development of
optimal cooling modes for the lining. To solve the heat conductivity equation, a numerical method
was chosen using an implicit four-point difference scheme. To study the cooling process of the casting
ladle lining, temperature measurements were carried out in the zone of the greatest wear of the lining.
Under conditions of natural convection, cooling of the casting ladle lining occurs unevenly. Cooling
schedules during natural convection are characterized by significant unevenness and high rates of
temperature decrease. The cooling rates of the inner surface of the lining at the initial stage of cooling
significantly exceed the values recommended in the technical literature. Such cooling rates lead to
the appearance of significant thermal stresses in the lining. For a refractory that has not been in
service, the maximum thermal compressive stresses exceed the ultimate compressive strength by
1.27 times, and the tensile stresses exceed the corresponding limit values by 4.4 times. For refractories
that have worked three fuses in the ladle lining, the maximum thermal compressive stresses exceed
the ultimate compressive strength by 1.28 times, and the tensile stresses exceed the corresponding
limit values by 3.19 times. The studied cooling modes for the casting ladle lining are unacceptable
for operation. Cooling, taking into account the indicated rates, leads to the destruction of the lining
material. To increase the resistance and duration of the working campaign of casting ladle linings, it
is necessary to develop cooling modes for the lining at speeds at which the resulting thermal stresses
do not exceed the strength of the refractory materials.

Keywords: ultimate strength of refractory materials; lining; high-temperature aggregates; thermal
stresses; chamotte refractories

1. Introduction (Problem Statement)

Non-stationary modes are an important component of the operation of high-temperature
aggregates. During these processes, maximum temperature differences are recorded across
the cross-section of the lining of the aggregate. The temperature difference across the
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lining cross-section leads to the occurrence of thermal stresses, which are the main cause of
destruction of the lining [1–4].

Slow heating or cooling of refractory materials and long-term operation at high temper-
atures do not cause stresses that could provoke the appearance of destructive cracks [5,6].
The rate of heating or cooling of the lining depends on the relationship between the heat
conductivity of the material and the heat transfer coefficient at its surface [5].

An analysis of the lining service showed that when the lining is rapidly heated, the
inner layers of the masonry experience compressive stress. During rapid cooling, the inner
layers are under the influence of tensile stresses. All other things being equal, rapid cooling
is more dangerous for a refractory lining than rapid heating. This claim is explained by
poor resistance of refractories to tension and good resistance of refractories to compression.
In practice, there are often cases of destruction of the lining as a result of insufficient
preheating of the masonry or the complete absence of preheating [7].

To determine the thermal state of the lining, we will consider two approaches: math-
ematical modeling and operational diagnostics based on the analysis of instantaneous
heat balances [5]. Solving the problem of determining the temperature fields of the lining
requires a reliable, fast, and simple computational algorithm. From this point of view,
engineering techniques seem more suitable.

The temperature distribution over the lining section can be calculated using a simple
and reliable method [8]. The developed method makes it possible to obtain a tempera-
ture distribution with non-stationary thermal conductivity. The accuracy of the method is
achieved by adjusting the cross-section temperatures when measuring temperatures at char-
acteristic points. The disadvantage of this method is the need to place temperature sensors
in the lining. This reduces the strength of several lining elements and its overall reliability.

One of the most common tools for mathematical modeling of temperature fields is the
finite difference method [9–11]. The method makes it possible to obtain the temperature
distribution over the cross-section of the lining during non-stationary processes. The finite
difference method is highly accurate and relatively simple, which makes it possible to
implement it in any programming language.

The temperature difference across the cross section of the lining determines the mag-
nitude of the resulting thermal stresses. If thermal stresses exceed the ultimate strength
of refractory materials, microcracks form and further destruction of the material occurs.
Compressive stresses are compared to the ultimate compressive strength, while tensile
stresses are compared to the ultimate tensile strength.

The certificate specifications of refractory materials do not always contain the data
necessary to analyze the heating rate of the linings. To obtain the missing data, laboratory
studies of the characteristics of refractory materials are carried out [12–16].

The dependence of the ultimate strength of refractory materials on temperatures
allows heating and cooling processes to be carried out at the highest possible speeds. The
development of optimal schedules for variable lining modes includes the calculation of
heating rates that do not exceed the maximum permissible rates [17]. Optimization of
heating and cooling schedules of the lining leads to a reduction in heating and cooling time,
thereby reducing energy costs and the cost of the technological product.

In the technical literature [7,18,19], considerable attention is paid to rationalizing the
heating process. These issues are considered from the point of view of temperature stresses
during the heating of refractory materials. However, cooling processes have not received
adequate attention in the literature. In existing scientific sources, the cooling process of the
lining occurs due to natural convection in the conditions of the production department. For
example, the authors of [20] determine the rate of decrease in the temperature of the casting
ladle lining during its cooling. Depending on the number of fuses, the rate of temperature
decrease ranges from 110 ◦C to 270 ◦C per hour.

Paper [2] considers cooling the lining from a temperature of 1250 ◦C to ambient tem-
perature. Five cooling rates were studied: 625 ◦C/h; 312.5 ◦C/h; 156.25 ◦C/h; 78.125 ◦C/h;
and 39.06 ◦C/h. The calculations showed that the tensile stresses in the first four cases
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exceed the ultimate strength of the material used. Cooling at such speeds can lead to
dissection of the brick.

The authors of [21] also provide data on the high cooling rates of the casting ladle. The
maximum value of the ladle’s natural cooling rate is 318 ◦C per hour.

Recommended cooling rates for a rotary furnace are given in [22]. The authors propose
conducting a controlled cooling process at a rate of no more than 50 ◦C per hour.

Thus, the data given in the literature on the cooling rates of linings of high-temperature
aggregates differ greatly. A significant difference in the rate of temperature decrease is asso-
ciated with the specifics of the refractory materials used, as well as with the characteristics
of the thermal operation of the aggregate. Some information on cooling rates is provided
only for the purpose of comparison with literature data. An analysis of the influence of
cooling rates on the destruction of the lining is not carried out. For this reason, the task of
determining the maximum permissible cooling rates of the lining of the aggregate requires
a solution.

From the literature review, we can draw a conclusion about the average value of the
cooling rate of linings of high-temperature aggregates, at which thermal stresses do not
lead to destruction of the lining. This value is within 60 ◦C/h [2,5,22].

It is worth noting the significant difference between the rates of natural cooling in the
atmosphere of the production department (more than 300 ◦C/h) and the recommended
rates (no more than 60 ◦C/h). This indicates the need to use special devices for a controlled
and uniform temperature reduction. The task of creating a model for calculating thermal
stresses and determining permissible cooling rates of the lining of the aggregate is relevant.

The purpose of the study is to investigate and analyze the thermal stresses arising
during cooling of the lining of a ferroalloy production ladle, based on the mathematical
model developed herein.

2. Materials and Methods

As the object of the study, we will consider a casting ladle of ferroalloy production. It
is a truncated cone with a base of a larger casing diameter in the upper part (3228 mm) and
a smaller diameter (1978 mm) in the lower part. The lining of the casting ladle consists of
two layers of ShKU-32 brick (JSC «Borovichi Refractories Plant», Borovichi, Russia) with
a total thickness of 160 mm. The masonry is made without a binder mortar. There is no
backfill and heat insulation between the layers of brick or between the brick and the casing.
Taking into account the size of the ladle, the lining can be considered flat.

The cooling process of the lining of casting ladles takes place by natural convection
in the atmosphere of the smelter. There is no special equipment for cooling of the lining.
The temperature in the workshop can vary depending on the time of year from −7 ◦C to
+32 ◦C. After draining the metal from the casting ladle and transporting the ladle to the
cooling place, the temperature field of the lining along the height and circumference is
assumed to be uniform.

The purpose of the calculation is to determine the thermal stresses that arise during
cooling of the lining of the casting ladle. Thermal stresses are determined based on the
calculation of the temperature fields of the lining. The obtained values of thermal stresses
are necessary for the analysis of existing cooling rates of casting ladles and subsequent
development of rational cooling modes for the lining.

In the general case, unsteady heat transfer by heat conductivity is described by the
Fourier equation:

ρc
∂T
∂t

=
∂

∂x

(
λ

∂T
∂x

)
+

∂

∂y

(
λ

∂T
∂y

)
+

∂

∂z

(
λ

∂T
∂z

)
+ Qw(x, y, z, T), (1)

where ρ—material density, kg/m3;
c—specific heat capacity of the material, kJ/(kg·◦C);
λ—heat conductivity coefficient of the material, kJ/(m ◦C);
Qw—power of internal heat sources, W/m3.
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When solving specific boundary value problems of non-stationary heat conductivity,
the use of numerical methods makes it possible to achieve a significant simplification of
the mathematical formulation. For the considered process of cooling the lining of a casting
ladle, the following conditions are met:

∂2T
∂x2 ≫ ∂2T

∂y2 and
∂2T
∂x2 ≫ ∂2T

∂z2 (2)

Under such conditions, we can limit ourselves to a one-dimensional nonstationary
heat conductivity equation. That is, heat spreads only from the inner surface to the outer
surface of the ladle lining. Temperature will only change in directions perpendicular to the
boundary of the plate. If the Ox axis is directed as shown in Figure 1, then the temperature
in the directions of the Oy and Oz axes can be considered constant:

ρc
∂T
∂t

=
∂

∂x

(
λ

∂T
∂x

)
+ Qw(x, t, T) (3)
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Figure 1. Difference scheme template.

This simplification is confirmed, for example, by the authors in [23]. The study proved
that when the ladle is heated (in the temperature range from 50 to 900 ◦C), the temperature
difference in the upper part of the ladle and at its bottom differs by no more than 1.5%.

Let us make the following assumptions:

– the thermal conductivity coefficient does not depend on temperature;
– there are no internal heat sources.

Taking into account the assumptions made, the differential Equation (3) will take the
following form:

ρ·c·∂T
∂t

= −λ·∂
2T

∂x2 , 0 ≤ x ≤ L, (4)

where L is the lining thickness, m.
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Taking into account two layers of lining, the initial and boundary conditions can be
written as follows:

t = 0; T = f(x); 0 ≤ x ≤ L
x = 0; T = T1; t > 0;
x = L; T = Tn; t > 0
T1(t, x∗) = T2(t, x∗),

−λ· ∂T1
∂x

∣∣∣
x=x∗

= −λ· ∂T2
∂x

∣∣∣
x=x∗

(5)

We will solve this problem numerically using an implicit four-point difference scheme.
The advantage of this scheme is its unconditional stability at arbitrary values of steps in
coordinates and time. A type IV boundary condition is used to determine the coefficients
at point x*, which is the point on the boundary of the lining layers.

We will calculate thermal stresses using the following formula, in accordance with the
methodology given in [24–28]:

σ = − α·E
1 − ν

·(Taν − Ti), (6)

where E—elastic modulus, kg/cm;
α—coefficient of thermal expansion, ◦C−1;
ν—Poisson’s ratio;
Tav—average temperature across the lining cross section, ◦C.
Ti—temperature at the point in question, ◦C.

The solution to this problem, taking into account the boundary conditions, will be
reduced to the following algorithm. At the first stage, we find the coefficients in the region
0 ≤ x ≤ x* using the characteristics of the first layer, and in the region x* ≤ x ≤ L using
the characteristics of the second layer. At the second stage, using the backward tridiagonal
matrix algorithm, we calculate the temperatures of the second and first layers. After
determining the temperature fields, we find the average temperature value for each time
step. Based on the data obtained, we calculate the thermal stresses in the second and first
layers of the lining. The block diagram of the algorithm is shown in Figure 2.
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3. Results and Discussion

To solve the problem of studying the cooling of the casting ladle lining, temperature
measurements were carried out in the zone of greatest wear of the lining. The zone of
increased wear is the middle zone along the height of the ladle (between the fifth and
seventh rows of lining). The temperatures of the outer surface of the casting ladle at a
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similar height were also measured. The measurements were carried out using an infrared
pyrometer Kelvin Compact 1500/175.

During the operation of the casting ladle, a change occurs in the thermophysical and
strength properties of the lining refractories. Research carried out in [12] showed that the
properties of the new refractory material differ from the properties of the material after
three fuses. The ultimate tensile strength of chamotte refractories of the ShKU-32 brand
after three fuses in the temperature range from 20 ◦C to 800 ◦C is lower than the ultimate
tensile strength of the refractory material that has not been in operation. The change in the
properties of these refractories can be divided into two stages. In the first stage (after one
to two fuses), changes in the properties of refractory materials are insignificant (no more
than 5%). The properties of a refractory that has not been in operation can be used for the
calculations of this stage. The second stage is characterized by significant changes in the
properties of refractories. Changes in the characteristics of refractories must be taken into
account in the calculations at the second stage.

During the operation of casting ladles, repairs are carried out with partial replacement
of the working layer of the lining. In this case, the lining is cooled to a temperature of 40 ◦C.
At this temperature, repair works can be carried out in accordance with industrial safety
requirements. Therefore, we will calculate temperature stresses for two options. In the first
option, the calculation is carried out for refractories without significant changes in their
properties (for the casting ladle lining after one to two fuses). In the second option, the
calculation is carried out, taking into account changes in the properties of refractories (after
three or more fuses).

The changes in temperature in the inner and outer surfaces of the casting ladle lining
during the cooling process are shown in Figure 3.
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The graph of changes in the temperature of the inner surface of the casting ladle lining
can be divided into several periods. During the first period (initial 40 min of cooling), the
temperature decreases from 1250 ◦C to 905 ◦C. This period is characterized by the highest
rate of temperature decline of 517.5 ◦C/h.

Over the next four hours, the temperature decreases from 905 ◦C to 557 ◦C. The
average rate of temperature decline was 87 ◦C/h. This exceeds the value of 60 ◦C/h that is
recommended in the literature [2,5,22].

This is followed by a period of decreasing the lining temperature from 557 ◦C to 39 ◦C
with an average cooling rate of about 35 ◦C/h. At the last stage of cooling, attention should
be paid to the following periods: a cooling period of four hours at a constant speed of
30 ◦C/h, a period of temperature reduction for 1 h 40 min at a constant rate of 27 ◦C/h,
and the last period, which has a constant cooling rate of 24 ◦C/h.

Taking into account the relatively small thickness of the steel casing and the high value
of the heat conductivity coefficient of steel, we will assume that the temperature on the
outer surface of the ladle is equal to the temperature of the outer surface of the lining.

The process of reducing the temperature of the outer surface of the casting ladle lining
can also be divided into several periods. During the first period, the temperature decreases
from 400 ◦C to 300 ◦C. This period is characterized by the highest rate of temperature
decrease of 150 ◦C/h.

This is followed by a period of 2 h 50 min, during which the temperature decreases
from 300 ◦C to 206 ◦C. The average rate of temperature decrease was 33.15 ◦C/h. This is
followed by a final period of temperature decrease from 206 ◦C to 40 ◦C at an average rate
of about 10.38 ◦C/h.

The cooling of the casting ladle lining under natural convection conditions is very
uneven. The temperature of the inner surface of the ladle decreases by 300 ◦C in the first
30 min. At the final stage of cooling, the temperature decreases by 300 ◦C within 10 h. Thus,
the cooling rates of the inner surface of the lining at different stages differ by more than
20 times.

The results of calculations of thermal stresses for refractories that have not been in
operation are presented in Figure 4.
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Line 1 shows the change in thermal compressive stresses during the cooling process.
Line 2 shows the change in thermal tensile stresses during the cooling process. The red
horizontal line with a value of 27 MPa is the ultimate compressive strength of the ShKU-
32 refractory brick. The red horizontal line with a value of 6 MPa shows the ultimate tensile
strength of the ShKU-32 refractory brick. Calculations were carried out for a time period of
up to 9 h 45 min. Further cooling up to 19 h 30 min is characterized by a smooth decrease
in thermal compressive and tensile stresses without exceeding the ultimate strength.

The maximum value of thermal compressive stress is 34.43 MPa, which is 1.27 times
higher than the ultimate compressive strength of the ShKU-32 refractory brick. Thermal
stresses exceed the ultimate compressive strength in the first 25 min of cooling.

The maximum value of thermal tensile stress is 26.52 MPa, which is 4.4 times higher
than the ultimate tensile strength of the ShKU-32 refractory brick. Thermal stresses exceed
ultimate tensile strength in the first 6 h 25 min of cooling.

The results of calculations of thermal stresses for refractories after three fuses are
presented in Figure 5. Line 1 shows the change in thermal compressive stresses, while line
2 shows the change in thermal tensile stresses during the cooling process of refractories.
The calculation results are presented for a time period of up to 9 h 45 min. Further cooling
up to 19 h 30 min is characterized by a smooth decrease in thermal compressive and tensile
stresses without exceeding the ultimate strength. It has been established that the graphs
have a similar shape to the graphs of thermal stresses for refractories that have not been
in operation.
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Figure 5. Thermal stresses of refractory materials in the inner (1) and outer (2) surfaces of the casting
ladle lining during cooling after three fuses (red lines—compressive and tensile strength limits of
refractory bricks).

The maximum value of thermal compressive stress is 34.46 MPa, which is 1.28 times
higher than the ultimate compressive strength of the ShKU-32 refractory brick. In this case,
thermal compressive stresses exceed the ultimate compressive strength in the first 40 min
of cooling.
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The maximum value of thermal tensile stress is 19.12 MPa, which is 3.19 times higher
than the ultimate tensile strength of the ShKU-32 refractory brick. Thermal tensile stresses
exceed the ultimate tensile strength in the first 6 h of cooling.

Thermal stresses exceeding the ultimate strength correspond to high rates of tempera-
ture decrease (Figure 3).

The duration of exposure to thermal tensile stresses exceeding the ultimate strength is
significantly longer than the duration of exposure to compressive stress. This is explained
by the nature of the temperature change, namely its decrease. During sudden cooling, the
temperature difference between the surface of the outer lining layer and the environment
will be greater than the temperature difference between the surface of the inner lining layer
and the environment.

After the first 40 min of cooling, within 4 h, the temperature decreases at an average
rate of 87 ◦C/h (which exceeds the recommended in the literature value of 60 ◦C/h). This
period is reflected in Figure 5 in the form of a curve, in which the thermal stress values
exceed the ultimate tensile strength of the refractory.

An analysis of the cooling of the casting ladle lining showed that the existing schedules
of cooling by natural convection are characterized by significant unevenness and high
rates of temperature decrease. The cooling rates of the inner surface of the lining at
different stages differ by more than 20 times. The maximum rate of temperature decrease is
517.5 ◦C/h.

High rates of temperature decrease lead to significant thermal stresses in the lining.
For a refractory that has not been in use, the maximum value of thermal compressive stress
exceeds the ultimate compressive strength by 1.27 times. The maximum value of thermal
tensile stress exceeds the ultimate tensile strength by 4.4 times.

For refractories after three melts, the maximum value of thermal compressive stress
exceeds the ultimate compressive strength by 1.28 times. The maximum value of thermal
tensile stress exceeds the ultimate tensile strength by 3.19 times.

4. Conclusions and Future Research Directions

As a result of this study, a mathematical model was developed for calculating thermal
compressive and tensile stresses in the two-layer lining of a casting ladle for ferroalloy
production. The adequacy of the model is confirmed by a satisfactory agreement between
the calculated temperature values and temperature measurements of the internal surface of
the ladle.

Based on the developed model, we calculated the temperature stresses that arise in
the lining when it is cooled by natural convection. High cooling rates of the lining in the
initial period lead to the occurrence of thermal stresses that exceed the ultimate strength of
the refractories used. The cooling process is accompanied by tensile stresses of significant
magnitude and duration.

The considered cooling modes for the casting ladle lining are unacceptable for use.
Cooling of the lining at current rates leads to destruction of the lining material and the need
to replace it. To increase the durability of casting ladle linings, it is necessary to develop
cooling modes at rates at which the resulting thermal stresses will not exceed the strength
of the refractory materials.
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