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ABSTRACT: Despite significant achievements in the field of tunnel construction, adequate methods for their 
dynamic calculation under transportation load (loads from moving transport within the tunnel) are still practically 
nonexistent. Particularly significant challenges arise during the calculation of shallowly embedded tunnels. Using 
the mathematical modelling method, such a calculation was performed for a tunnel supported by a circular 
cylindrical homogeneous lining. In the presented work, a shallowly embedded tunnel reinforced with a two-layer 
lining is considered. When creating the mathematical model, the tunnel is represented as a circular cylindrical two-
layer shell located in an elastic half-space. The load-free horizontal boundary of the half-space (ground surface) is 
parallel to the shell axis. Dynamic equations of elasticity theory in Lamé potentials are used to describe the motion 
of the internal thick layer of the shell and the surrounding body. The vibrations of the external thin layer of the 
shell are described by classical shell theory equations. The equations are represented in moving Cartesian and 
cylindrical coordinate systems associated with a load moving uniformly along the inner surface of the shell. Based 
on the obtained solution to the problem and numerical experiments, the stress-strain state of the two-layer lining 
of a shallowly embedded tunnel and the surrounding rock body is investigated under the action of a uniformly 
moving axisymmetric normal load. It is established that at the ground surface when the lining has a rigid contact 
with the rock body, the displacements and stresses are lower compared to when the contact is sliding. 
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1. INTRODUCTION 
 

Experimental studies show that when tunnels are 
subjected to transportation loads, vibrations occur 
both in the structures themselves and in the 
surrounding rock body. Exceeding the permissible 
vibration levels can lead to loss of load-bearing 
capacity of the structures or render them unsuitable 
for normal operation. In the case of shallowly 
embedded structures, similar consequences can affect 
nearby surface structures. It should be noted that 
experimental methods for studying vibration 
processes resulting from transportation loads in these 
structures require significant financial resources, and 
in some cases, conducting such experiments may not 
be feasible. Therefore, there is a need for efficient 
methods of dynamic analysis based on mathematical 
models using modern mechanics concepts [1]. 

When constructing a mathematical model for the 
study of the dynamics of tunnels under the influence 
of transportation loads, the design of these structures 
and their depth of installation are of great importance 
[2, 3]. Most often, this structure is represented as an 
infinitely long circular cylindrical homogeneous shell 
placed within an elastic space (design scheme for 
deep-seated construction) or an elastic half-space 
(design scheme for shallow construction). The inner 
surface of the shell is subjected to a load moving 
along its axis.  

The dynamic behavior of elastic space under the 
action of a moving load on thick-walled and thin-

walled homogeneous shells has been investigated in 
articles [4, 5], respectively and numerous other works. 
In the dynamic analysis of shallowly buried tunnels 
under transportation loads, there is a need to consider 
the influence of waves that are generated during the 
movement of the load and are reflected by the Earth's 
surface (the boundary of the half-space). This makes 
the calculation more complex. Therefore, the number 
of publications that can be used for the calculation of 
shallow tunnels and the study of their dynamic 
behavior under the action of transportation loads is 
relatively small and mostly covers recent years, 
particularly [6 – 14]. Here, as in [4, 5], the design 
scheme of the tunnel lining is a homogeneous circular 
cylindrical shell. In the presented paper, the tunnel 
lining structure is modeled as a circular cylindrical 
shell, consisting of two concentric layers: a thick 
inner layer and a thin outer layer. The shell layers are 
rigidly interconnected. The contact between the shell 
and the body can be either rigid or sliding. 

The study aims to obtain an analytical solution to 
the problem and to develop computer programs based 
on it to investigate the dynamics of a shallow tunnel 
reinforced with a two-layer lining, corresponding to 
the tunnel model adopted in this paper, under the 
action of stationary transport loads. The proposed 
solution is presented in the "Results" section, where 
the numerical experiment results are also provided 
and analyzed in the "Discussion" section. The sources 
used in the solution are highlighted in the "Methods" 
section. The "Conclusion" section summarizes the 
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findings of the study, recommending that design 
organizations use the developed mathematical model 
of the dynamics of shallowly embedded tunnels in 
metro and tunnel construction. 

 
2. RESEARCH SIGNIFICANCE 

 
The obtained solution and the developed software 

package based on it enable the investigation of the 
dynamics of the rock body and the Earth's surface 
along the tunnel alignment at different velocities of 
transport loads. This analysis takes into account the 
physical and mechanical properties of the materials 
and dimensions of the structural elements of its lining 
using mathematical modeling methods. The selection 
of materials and the thickness of the lining shell layers 
in the tunnel helps reduce surface vibrations along the 
alignment, which can negatively impact the seismic 
stability of nearby buildings and structures. 

 
3. METHODS 
 

The research is based on the method of 
mathematical modeling [1] using elasticity theory. 
The tunnel is represented as an infinitely long circular 
cylindrical two-layer shell located in an elastic half-
space parallel to its horizontal boundary. Initially, the 
load moving uniformly along the inner surface of the 
shell is assumed to be sinusoidal along the shell axis. 
The method of partial separation of variables [7, 8] is 
proposed to solve the problem. The solution for Lamé 
potentials is given as a superposition of Fourier-
Bessel series and Fourier-type contour integrals. Next, 
the method of decomposition of potentials into plane 
waves and decomposition of plane waves into series 
over cylindrical functions is used [7, 8]. Finally, the 
obtained solution is applied to solve the problem of 
the action of a moving load on this shell, which is not 
periodic but can be represented in the form of a 
Fourier integral. 

 
4. RESULTS 
 
4.1 Problem Formulation and Analytical Solution 

 
Let us consider a homogeneous and isotropic 

medium in Cartesian (x, y, z) and cylindrical (r, θ, z) 
coordinate systems having a fixed position in space, 
which is a linearly elastic half-space (body). The half-
space, with a load-free horizontal boundary, contains 
an infinitely long circular cylindrical cavity with a 
radius of R1. The cavity's axis aligns with the z-axis, 
which runs parallel to the boundary. The x-coordinate 
axis is perpendicular to the boundary of the half-
space: x ≤ h, h > R1 (see Fig. 1).  

The cavity is reinforced by a two-layer shell, the 
inner (supporting) layer of which is a thick elastic 
shell with a radius of the inner surface R2. The outer 
(enclosing) layer is a thin-walled elastic shell with a 

thickness of h0 and a radius of the middle surface R1 
(due to the small thickness of h0, it is assumed that the 
thin-walled shell contacts the thick shell and the 
medium along its middle surface). The layers of the 
shell are rigidly interconnected. The contact between 
the shell and the body can be either sliding (with 
bilateral coupling in the radial direction) or rigid. 

 

 
 

Fig. 1 Two-layer shell in an elastic half-space 
 

The physical and mechanical properties of the 
materials in the shell layers and the surrounding body 
are characterised by the following constants: nk – 
Poisson's ratio, µk – shift modulus, rk – density 
(k = 0, 1, 2), where index k = 0 refers to the enclosing 
layer of the shell, k = 1 – to the body, k = 2 – to the 
supporting layer of the shell. 

A load with an intensity P moves along the inner 
surface of the shell at a constant speed c in the z-axis 
direction. The load speed is lower than the speed of 
shear wave propagation in the supporting layer and 
the body. It is necessary to determine the steady-state 
response of the shell and the surrounding medium to 
the given load. 

Cartesian (x, y, η = z – ct) and cylindrical 
(r, θ, η = z – ct) coordinate systems moving together 
with the load are applied to obtain the stationary 
solution of the problem. 

To describe the motion of the half-space (k = 1) 
and the supporting layer of the shell (k = 2), the 
dynamic equations of elasticity theory are used [8, 9] 

 
       (1) 

 
where Mpk = c/cpk, Msk = c/csk – the Mach numbers; 

,  – the velocities 
of shear and expansion-compression wave 
propagation,   ;    – the 
Laplace operator, uk – displacement vectors of the 
points. 

The vibrations of the enclosing layer of the shell 
will be described by the equations of classical shell 
theory [7, 13, 14] 
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,              (2) 

. 

 
Here R = R1; in case r = R: qj1 = σrj1, qj2 = σrj2 – 

components of the reaction of the body and the 
supporting layer of the shell, σrj1, σrj2 – components 
of stress tensors in the body and the supporting layer 
of the shell; u0j – components of displacements of 
points of the median surface of the enclosing layer of 
the shell; j = h, q, r. 

Let us express the vectors uk through the Lamé 
potentials jjk (j = 1, 2, 3, k = 1, 2) [8, 9] 
 

,              (3) 
 

which, as can be inferred from (1) и (3), satisfy the 
equations 
 

.        (4) 
 

Here eη is the unit vector of η-axis, М1k = Мpk, 
М2k = М3k = Мsk. 

The components of the stress tensors σlmk in the 
body (k = 1) and the supporting layer of the shell 
(k = 2), related to the components ulk of the 
displacement vectors uk by Hooke's law (l, m = r,θ,η, 
k = 1, 2; l, m = x,y,η, k = 1), can be expressed through 
the same potentials jjk.  

Let's first consider the effect of a sinusoidal in h 
mobile load on the shell 

 

  (5) 

 
where x defines the period T = 2p/x operating load, 
Pj(q,h) – components of the load intensity P(q,h). 

In the steady state, the dependence of all 
quantities on η takes the form (5), hence 

. 
By substituting the last expression into (4), one 

can obtain 
 

             (6) 
 
where  – the two-dimensional Laplace operator,  

. 
Since c < csk, then Msk < 1 (msk > 0), k = 1, 2. 

Therefore the solutions of equations (6) can be 
represented as [8] 

 
,                     (7) 

 
where: 

- for the half-space 

, 

; 

- for the supporting layer of the shell 

, 

. 

Here  – Macdonald functions and 

modified Bessel functions, , ; 
an1,…, an9,  – coefficients and functions to 
be defined, . 

In the Cartesian coordinate system, the 
expressions for the potentials  (7) will take the 
form [8] 

 

,   (8) 

 
where

. 
Let's express the functions  using the 

coefficients  ( ). Considering (8), let's use 
the boundary conditions when x = h: 

. 
Extracting coefficients of eiyζ and equating them 

to zero, one derives a system of three equations from 
which one can deduce 

 

.                        (9) 

 
The form of the determinants  and  coincides 
with the analogous determinants in the case of an 
unsupported cavity in an elastic half-space and is 
defined in [1], where it is demonstrated that  
does not  equal zero  when ,  with  
representing the Rayleigh surface wave speed in the 
half-space. 
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When , the relationships (8), taking into 
account (9), can be rewritten as 

 

. 

In the cylindrical coordinate system, at c < cR, the 
expressions for the potentials  (7), taking into 
account (9), will take the form [8] 

, 

where , 

. 

Let us substitute into the components of the stress-
strain state (SSS) of the elastic medium (k = 1) and 
the supporting layer of the shell (k = 2) represented 
through the Lame potentials the relations for  
found in the cylindrical coordinate system 
(l, m = r,θ,η). Then only the coefficients an1,…, an9 
will be unknown in the expressions for displacements 

 and stresses  (* indicates that these 
components correspond to the case of sinusoidal 
moving load (5) acting on the shell). 

Since in the steady state, under the action of a 
travelling sinusoidal load on the shell, the dependence 
of all quantities on h has the form (5), 

 

.                   (10) 

 
By substituting (10) into (2), one obtains the 
expression for the n-th term of the expansion 
 

, 
        (11) 

, 
 
where 

 

, 
 

, , ; 

in case r = R: , , j = h, q, r. 
Resolving (11) with respect to u0nh, u0nq, u0nr, find 

 

 

. 

Here 

  

 
 

 

 
; 

for qnj1 and qnj2 index j = 1 corresponding to the 
index h,  j = 2 – q, j = 3 – r.  

To determine the coefficients an1,…, an9 one uses 
the following boundary conditions: 

- for sliding contact of the shell with the 
surrounding body 
at r = R1    , , , , 
at r = R2    , ;  

- for rigid shell contact with the surrounding body 
at r = R1        , ,  
at r = R2        , . 

By substituting the corresponding expressions 
into the boundary conditions for the specified type of 
contact between the shell and the body and equating 
the coefficients of the Fourier–Bessel series at , a 
system of linear algebraic equations is obtained for 
each value of ,. The coefficients 
an1,…, an9 can be determined from this system of 
equations. 

Knowing the solution to the problem for the 
sinusoidal load (5), the response of the shell and the 
surrounding body to a uniformly moving aperiodic 
load of the form P(q,h) = p(q)p(h) (typical for 
vehicles) can be found by superposition, using the 
representation of the load and the SSS components of 
the half-space and the supporting layer of the shell in 
the form of Fourier integrals 
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   (12) 

Here , k = 1, 2. 

. 

Any numerical integration method can be used to 
calculate the displacements and stresses (12), as long 
as for each value of . 
Investigations on the determinants  have 
shown that this condition is satisfied if the speed of 
the moving load c is less than its critical speeds с(n)*  
( ), which can be lower than the Rayleigh 
surface wave speed and depend on the number n. 
Dispersion equations Dn(x, с) = 0 establish these 
critical speeds at the minima of the respective 
dispersion curves at с ~ x. Additionally, it has been 
demonstrated by calculations that the lowest critical 
speed takes place when n = 0 (min c(n)* = c(0)*) [7, 8]. 
 

4.2 Numerical Experiments 
 

Let us consider a tunnel reinforced with a two-
layered steel-concrete lining, buried at a depth of 
h = 6 m within a rock body characterized by the 
following properties: r1 = 1,5×103 kg/m3, n1 = 0,294, 
µ1 = µ = 1,0935×108 Pa. Design parameters for the 
lining: inner (load-bearing) layer – thick-walled 
concrete (r2 = 2,5×103 kg/m3, n2 = 0,2, 
µ2 = 1,21×1010 Pa) [15] the shell is 0,5 m thick and the 
radii of the surfaces R1 = R = 3,0 m, R2 = 2,5 m, the 

outer (enclosing) layer is thin-walled steel 
(r0 = 7,8×103 kg/m3, n0 = 0,3, µ0 = 8,08×1010 Pa) shell 
thickness h0 = 0,02 m. The contact between the layers 
of the lining is assumed to be rigid.  

An axisymmetric normal load of intensity q (Pa) 
moving at a speed c = 100 m/s along the tunnel exerts 
a uniform pressure on its lining in the interval 
|h| £ l0 = 0,2 m. The intensity of the load is chosen in 
such a way that the total load along the entire length 
of the loading section 2l0 was equal to the 
concentrated normal ring load intensity P°° (N/m), i.e. 
q = P°°/2l0. Numerical investigations of the 
corresponding dispersion equations for this case have 
shown that within the subsonic range of speeds, they 
do not have roots for any contact conditions between 
the lining and the surrounding rock body. 

The names indicated (index k is omitted): 
u°r = urµ/P°(m), s°rr = srr/P°, s°qq = sqq/P°, 
s°hh = shh/P°; u°x = uxµ/P°(m), u°y = uyµ/P°(m), 
s°yy = syy/P°, where P° = P°°/m (Pa). 

Tables 1 – 3 in the xy coordinate plane (h = 0) 
present the results of calculating the SSS of the 
supporting layer of the tunnel lining and the rock 
body. Table 1 provides the values of the SSS 
components of the inner (r = R2) and outer (r = R1) 
surface of the lining's supporting layer. Table 2 shows 
the values of the SSS components at the contact 
surface of the rock body (r = R1). The values of the 
SSS components of the ground surface (x = h) are 
presented in Table 3. Figures 2 – 5 illustrate the 
curves depicting changes in the components of SSS at 
the ground surface. Curves 1 correspond to rigid 
contact of the lining with the rock mass, while curves 
2 represent sliding contact.

 

Table 1 Components of the SSS of the supporting layer of the lining in the xy coordinate plane (η = 0)  
 

r Components 
of the SSS 

|q|, deg. 
0 20 40 60 80 100 120 140 160 180 

Rigid contact of the lining with the rock body 

R2 

u°r´10 0.24 0.24 0.23 0.23 0.23 0.23 0.22 0.22 0.23 0.23 
s°rr -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 
s°θθ 1.00 1.01 1.01 1.02 1.02 1.02 1.01 1.01 1.00 1.00 
s°hh -4.33 -4.33 -4.32 -4.32 -4.33 -4.33 -4.33 -4.33 -4.33 -4.33 

R1 

u°r´10 0.21 0.21 0.20 0.20 0.20 0.20 0.19 0.19 0.20 0.20 
s°rr -0.15 -0.15 -0.15 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 -0.16 
s°θθ 2.04 2.03 2.03 2.02 2.02 2.01 2.01 2.02 2.02 2.02 
s°hh 1.48 1.48 1.47 1.47 1.46 1.46 1.46 1.46 1.6 1.46 

Sliding contact of the lining with the rock body 

R2 

u°r´10 0.24 0.24 0.24 0.23 0.23 0.23 0.22 0.22 0.23 0.23 
s°rr -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 -2.5 
s°θθ 1.02 1.02 1.03 1.04 1.04 1.03 1.03 1.02 1.01 1.01 
s°hh -4.35 -4.34 -4.34 -4.34 -4.34 -4.34 -4.34 -4.35 -4.35 -4.35 

R1 

u°r´10 0.21 0.21 0.21 0.20 0.20 0.20 0.19 0.19 0.20 0.20 
s°rr -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 -0.15 
s°θθ 2.06 2.06 2.05 2.04 2.04 2.04 2.04 2.04 2.05 2.05 
s°hh 1.53 1.53 1.52 1.51 1.51 1.50 1.50 1.50 1.50 1.51 
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Table 2  Components of the SSS of the contact surface of the rock body (r = R1) in the xy coordinate plane (h = 0) 
 

r Components 
of the SSS 

|q|, deg. 
0 20 40 60 80 100 120 140 160 180 

Rigid contact of the lining with the rock body 

R1 

u°r´10 0.21 0.21 0.20 0.20 0.20 0.20 0.19 0.19 0.20 0.20 
s°rr´10 -0.41 -0.42 -0.43 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 -0.44 
s°θθ´10 0.05 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 
s°hh´10 0.0 0.0 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 -0.01 

Sliding contact of the lining with the rock body 

R1 

u°r´10 0.21 0.21 0.21 0.20 0.20 0.20 0.19 0.19 0.20 0.20 
s°rr´10 -0.33 -0.34 -0.36 -0.37 -0.37 -0.38 -0.37 -0.38 -0.38 -0.38 
s°θθ´10 -0.04 -0.04 -0.03 -0.03 -0.03 -0.03 -0.03 -0.04 -0.04 -0.04 
s°hh´10 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 -0.34 

 
Table 3 Components of the SSS at the ground surface (x = h) in the xy coordinate plane (h = 0) 

 
Components 
of the SSS 

|y|, m 
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 

Rigid contact of the lining with the rock body 
u°x´100 0.73 0.73 0.71 0.69 0.66 0.63 0.59 0.56 0.53 
u°y´100 0.0 0.04 0.07 0.10 0.12 0.13 0.14 0.15 0.14 
s°yy´100 0.44 0.43 0.40 0.36 0.31 0.25 0.19 0.14 0.10 
s°hh´100 0.72 0.72 0.70 0.67 0.63 0.58 0.54 0.50 0.46 

Sliding contact of the lining with the rock body 
u°x´100 0.89 0.89 0.87 0.84 0.81 0.77 0.72 0.68 0.64 
u°y´100 0.0 0.04 0.08 0.11 0.14 0.16 0.17 0.17 0.17 
s°yy´100 0.53 0.52 0.49 0.44 0.37 0.30 0.23 0.17 0.12 
s°hh´100 0.87 0.86 0.84 0.81 0.76 0.71 0.66 0.60 0.56 

 
 

 
 

Fig. 2 Displacements u°x at the ground surface in the xy coordinate plane 
 

 
 

Fig. 3 Displacements u°y at the ground surface in the xy coordinate plane 
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Fig. 4 Stresses σ°yy  at the ground surface in the xy coordinate plane 
 

 
 

Fig. 5 Stresses σ°ηη at the ground surface in the xy coordinate plane in the xy coordinate plane 
 

 
 

5. DISCUSSION 
 
Analysis of the results indicates that on the inner 

surface of the supporting lining layer (r = R2, h = 0), 
stresses sθθ are tensile, while stresses shh are 
compressive. The contact conditions between the 
lining and the surrounding rock body have a 
negligible impact on their numerical values, as well 
as on radial displacement values ur. Radial stresses srr 
corresponds to the boundary condition. On the 
contour of the outer surface of the supporting lining 
layer (r = R1, h = 0) there are also tensile stresses sθθ, 
shh that depend little on the contact conditions of the 
lining with the rock body. At the same time, the stress 
sθθ is approximately 2 times greater, and the stress 
shh is 3 times lower corresponding stress sθθ and |shh| 
on the contour of the inner surface of the supporting 
lining layer. Regardless of the contact conditions 
between the lining and the rock body, the stress 
magnitude |srr| on the outer contour of the concrete 
lining surface is almost 17 times smaller than |srr| on 
the inner contour, while the reduction in displacement 
values ur is insignificant.  

On the contour of the contact surface of the rock 
body (r = R1, h = 0) the radial displacements ur 
correspond to the radial displacements on the outer 
contour of the supporting layer surface, while the 
magnitudes of the stresses |srr|, |sθθ|, |shh| are 
significantly smaller (Table 2). In the case of rigid 
contact between the lining and the rock body, tensile 

stresses sθθ and compressive stresses srr, shh, act, 
while in the case of sliding contact, the stresses srr, 
sθθ, shh are compressive. In the case of rigid contact 
of the lining with the rock mass, the magnitude of the 
stress |srr| on the contact surface contour is higher 
compared to the case of sliding contact, the stresses 
|shh| are substantially lower, and the stress 
magnitudes |sθθ| have different signs.  

With moving away from the tunnel lining, the 
values of rock mass SSS components attenuate. On 
the ground surface, in the case of rigid contact 
between the lining and the rock body, the 
displacements ux and the stresses syy, shh are lower 
compared to the case of sliding contact (Table 3). 
These components have the highest values at y = 0 
and quickly diminish as |y| increases (Fig. 2 – 5). 
 
6. CONCLUSION 
 

The model problem of the dynamics of a 
shallowly buried tunnel reinforced with a two-layer 
lining under the influence of a stationary transport 
load has been solved. Unlike similar works in which 
the rock body is represented as an elastic space, in this 
study it is represented as an elastic half-space.  

The study focused on examining a shallowly 
embedded tunnel reinforced with a two-layer steel-
concrete lining (comprising a thick inner concrete 
layer and a thin outer steel layer), subjected to a 
uniformly moving axisymmetric cylindrical 
compressive load. The contact between the rock body 
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and the lining of the tunnel was assumed to be either 
rigid or sliding. By using the computer program 
developed by the authors, SSS components were 
computed for the cross-sectional plane of the tunnel 
that passes through the middle of the moving load. An 
analysis of the calculation results has been conducted, 
from which it is established that the contact 
conditions between the rock body and the lining have 
a minor influence on the SSS of its inner layer and a 
significant impact on the stresses along the contact 
surface of the body. On the Earth's surface, 
displacements and stresses are lower with a rigid 
lining-body contact than with a sliding contact. 

The developed mathematical model for shallowly 
embedded tunnel dynamics is recommended to 
design organizations in the field of metro construction 
and tunnel engineering. When designing a tunnel 
lining, it's important to consider not only the physical 
and mechanical properties of the materials used and 
the rock mass itself, but also the structural features of 
the tunnel, the depth at which it's embedded, and the 
type and speed of the transport load it will carry. The 
widespread introduction of high-speed transport has 
made the latter especially relevant. Additionally, it is 
worth noting that the speed of modern vehicles lies in 
the subsonic range and is much less than its upper 
limit. 
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