
1 23

Education and Information
Technologies
The Official Journal of the IFIP Technical
Committee on Education

ISSN 1360-2357

Educ Inf Technol
DOI 10.1007/s10639-019-10051-z

A spiral model teaching mobile application
development in terms of the continuity
principle in school and university education

G. Aimicheva, Zh. Kopeyev,
Zh. Ordabayeva, N. Tokzhigitova &
S. Akimova

Highlight

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

A spiral model teaching mobile application
development in terms of the continuity principle
in school and university education

G. Aimicheva1 & Zh. Kopeyev1 & Zh. Ordabayeva2 & N. Tokzhigitova3 &

S. Akimova4

Received: 7 August 2019 /Accepted: 30 October 2019/
Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The article is devoted to the issues of teaching mobile application development and, as
a consequence, training of highly qualified in-demand mobile developers. Nowadays,
training professional mobile developers is a crucial task all over the world. The
researchers emphasize the complexity of mobile application development associated
with its multidisciplinarity, the mobile device hardware limitations, the necessity of
object-oriented programming in the mobile development. Due to the complexity of the
mobile development field and the gap in programming knowledge of first-year stu-
dents, there are fears that prepare highly qualified mobile developers during under-
graduate education is impossible. In this regard, the article proposes a spiral model
teaching mobile application development with the aim of effective training of mobile
developers. The spiral model covers all levels of teaching programming from high
school to higher education with aim to develop knowledge from introductory program-
ming to mobile application development. The offered spiral model suggests the
continuity in the content and overcoming the gap in programming knowledge between
high school and higher education. Such a model is the most appropriate for the training
of highly qualified mobile developers in the context of Kazakhstan’s education system.

Keywords Mobile application development (MAD) . GAP in programming knowledge .

Continuity in teachingMAD .Mobile developers . Spiral model

1 Introduction

Mobile computing is one of the rapidly developing areas of computing (Pinar 2017).
Teaching and learning the mobile application development is one of the recent

Education and Information Technologies
https://doi.org/10.1007/s10639-019-10051-z

* G. Aimicheva
aimicheva@mail.ru

Extended author information available on the last page of the article

Author's personal copy

http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-019-10051-z&domain=pdf
mailto:aimicheva@mail.ru

problems (Nurbekova and Aimicheva 2018). The demand for competent mobile
application developers globally is high. Many researchers agree that the training of
mobile application developers under the undergraduate programme is impossible for
several reasons (Taft 2007). First, mobile application development is a multidisciplin-
ary field that integrates knowledge of such areas as software development, human-
machine interaction, web programming, IT-security, network interaction, artificial
intelligence, machine learning. This reason provides to study mobile application
development only in undergraduate courses. Secondly, the professional mobile appli-
cation development requires the knowledge and skills of object-oriented analysis and
programming (Pinar 2017; Alston 2012). The insufficient level of programming
background makes necessary to bridging gap in students’ knowledge of the object-
oriented programming basic concepts within the initial undergraduate courses. It also
leads to teaching mobile application development in upper division courses. As a result,
students are time poor to master the mobile application development professionally.

Due to the aforementioned circumstances, the overhaul of school and university
curricula is required in terms of the continuity principle and filling gap in programming
and to quickly adapt students to contemporary learning content of mobile application
development.

The following research question will be addressed in this study: How to bridge the
gap in the level of high school graduates’ knowledge on programming in order to
prepare successful mobile application developers at the university?

Answer such a question we need to analyze similar works that addressed the issue of
continuity of knowledge in various disciplines and educational levels in order to bridge
the knowledge gap of high school graduates’, quickly adapt to university disciplines,
and effectively develop the professional competencies of future specialists.

In the work (Stone 2019). it is noted that in the last decade, due to an increased
recognition of the importance of computing skills in the global economy, there has been
a triple increase in the undergraduate Computer Science (CS) program enrollments by
three times more. Most of the incoming students have an incorrect perception of
computing, computing majors, and computing-related careers due to insufficient career
counseling and applications-centric high school computing curricula. Survey has
shown that 13.04% of participants taking a computer programming course in high
school. This fact directly reflects on the students’ achievement on computer science in
university. The authors see the solution to the problem in curriculum overhaul in order
to develop more in-depth knowledge of computer science in the school course and to
successfully adapt to university content on computing majors and in accordance with
the growing requirements of global economics.

Many studies confirm the need for learning programming as a way of developing
computational thinking (CT) (Buitrago Flórez et al. 2017; Dodero et al. 2017; Fronza
et al. 2019; Bers 2017; Good et al. 2017; Shute et al. 2017). CT was first used by
Seymour Papert (Papert 1980; Papert 1991) and was introduced as a term by Wing
(2006). It is known that CT is the important skill of modern employee, not only in
computing majors, but also in all other fields. So, the authors of works (Buitrago Flórez
et al. 2017; Dodero et al. 2017; Bers 2017; Shute et al. 2017) established the impact of
learning programming on the developing of CT at school age pupil. In this basis they
state that programming be taught from elementary school to universities in order to
develop soft-skills, that future professional employee should possess, such as problem

Education and Information Technologies

Author's personal copy

solving, logical, algorithmic and critical thinking. In this case, programming used as a
vehicle for develop CT, and the aim of researchers is to choose an educational strategy,
that provided progressive enhancement of CT skills from the school level to the
university level, combining different environments and programming languages.

The work (Zorana 2003) is considered a method for solving the problem of gap in
physics knowledge for engineering students. In order to bridge the knowledge gap in
physics in higher school and further effective study at university, the author considers to
develop information literacy through the collaborative work of teachers, lecturers and
librarians and to introduce changes in curricula at different educational levels. This
paper emphasizes the role of teacher collaboration at different educational levels and
continuity of learning content.

In the work (Siadaty and Taghiyareh 2007), the author states that teaching students
with different domain knowledge, learning styles, interests and preferences is impos-
sible using the «one-size-fits-all» approach. The use of an adaptive e-learning system is
proposed to bridging the gaps in the students’ knowledge and to improve the learning
outcomes. This system offers students pedagogically based individual learning content
due to the basic knowledge of the subject area and student’s learning style. It has been
experimentally proven that learning content, adapted to the needs of students, improved
learning outcomes compared to using common learning content for all students.

The authors (Offir et al. 2003) propose the use of distance learning for high school
students of peripheral areas to provide their high learning potential in the computer
science and adapt to learning at university. As part of the project, high school students
were invited to study at the initial computer science course at the university. Educational
content includes audio and video materials that are available for study and download on
the project website, as well as tasks based on active online performance to enhance the
cognitive abilities of high school students. The online collection and analysis of the
results of the assignments allowed the university faculty, together with the school
teachers, to adjust the learning process and adapt high school students to university
studies. The authors of the paper (Offir et al. 2003) emphasize the importance of
collaboration of school teachers and university faculty and the adaptation of learning
content to bridge the gap in students’ knowledge and achieve better learning results.

Having studied international experience in bridging the gap in students’ knowledge
at high school and university, we can conclude that one of the possible approaches to
solve the research question is to overhaul school and university curricula with a
progressive enhancement and develop knowledge. In other words, it is necessary to
provide for the continuity of the learning content from school to university level. In this
case, the most acceptable approach to the development of the learning trajectory of
programming teaching and the successful training of mobile application developers is
the spiral approach. Due to this approach, the learning unit of knowledge establish at
the elementary level, is progressive enhanced from one educational level to another and
developing appropriate skills, as a consequence, curricula should be developed in terms
of the spiral principle (Bruner 1960).

The spiral approach was suggested by psychologist Jerome Bruner (1960), who
considers that: «Any subject can be taught effectively, in some intellectually honest
way, to any child at any stage of development» (Bruner 1960). The approach effec-
tiveness is due to the fact that it involves multiple revisions of topics with increasing
depth and complexity (Araujo et al. 2018), thereby allowing basic knowledge to be

Education and Information Technologies

Author's personal copy

deposited in a long-term memory (Joshi and Desai 2016). In addition, the spiral
approach assumes horizontal and vertical integration of knowledge, which allows using
the previous knowledge of students on certain topics at each stage and reducing
cognitive overload due to the separation of content depending on its complexity
(Araujo et al. 2018; Coelho & Moles et al. 2016). Moreover, researchers consider that
the spiral learning model is an interactive method of teaching supports learning by
making students to build on what is already familiar to them rather than learning new
and difficult things (Joshi and Desai 2016).

In order to realize the spiral model of programming teaching at school and the
successful training of mobile application developers at the university, it is necessary to
single out the knowledge that is basic for the development of mobile applications, this
is knowledge of the basic principles of programming, basic concepts of object-oriented
programming and the fundamentals of mobile application development. This basic
knowledge should be laid as a part of a school course in computer science and further
deepening at the university. Therefore, it is necessary to revise the content of curricula
in computer science of secondary education and study programs of higher education of
the Republic of Kazakhstan in order to build a more effective educational strategy for
the training of highly qualified specialists.

2 The learning programming: A literature review

Many studies (Dillashaw and Bell 1985; Scherer et al. 2018; Kafai and Burke 2013;
Inhelder and Piaget 1958; Yardi and Bruckman 2007; Tan et al. 2009) show the
necessity, possibility and popularity of studying programming in high school. Teaching
programming in middle school is justified, because at this age, according to Piaget’s
theory, there is a transition between stages from concrete thought operations to abstract
logical thinking (Inhelder and Piaget 1958). Therefore, teaching programming can be
started at this age, but with the right content, in order to gradually learn from the simple
to the complex in terms of scaffolding principle. At the same time, when developing
programming curricula, one should take into consideration that in teaching computer
science at school the main goal should be teaching fundamental concepts conveyed by
the language, and not teaching the language itself (Kafai and Burke 2013). At the same
time, new strategies are needed in teaching programming, because the learning of
computer programming is not easy, even for university students enrolled in computer-
related disciplines. Students, who have basic knowledge of programming, perceive in-
depth programming courses as difficult, because these courses require higher-order
thinking skills (Saltan 2016).

In such a case, an approach to teaching programming based on the use of algorithm
visualization software such as Scratch, Greenfoot, Alice, App Inventor is considered to
be interesting. These platforms facilitate the learning programming, making the pro-
gramming process engaging and visualizing and allow developing knowledge of the
basic programming principles, the basic concepts of object programming and the basic
principles of programming mobile applications (Saltan 2016). After learning these
platforms, students can safely to go on not only to more complex programming
languages, but also to complex processes of the mobile application development
(Cheung et al. 2009).

Education and Information Technologies

Author's personal copy

The visual programming environment, such as Scratch, is designed to teach
programming to students ranging from 8 years old or above. Scratch motivates to
learning programming and provides to master the basic principles of programming
(Cheung et al. 2009; Maloney et al. 2010). Scratch allows to create animated and
interactive applications without writing program code, revealing creativity of
schoolchildren and highly motivating them to learn programming. (Maloney
et al. 2010). The research results indicate the possibility and necessity of using
this environment in school to develop programming skills, algorithmic and logical
thinking (Maloney et al. 2010; Funke et al. 2017). In addition, K-12 schools
around the world and even some universities (including Harvard and the Univer-
sity of California at Berkeley) use Scratch as the first step into programming
(Resnick et al. 2009). To provide smooth transition from programming in visual
environments (Scratch, Greenfoot, Alice) to the creation of Android applications
the MIT App Inventor can used.

App Inventor (AI) is a visual programming environment that allows users to easily
develop mobile applications for Android-based smart phones without writing any
program code. This environment can be studied in a computer science course, because
AI is easy to learn, accessible and helps students solve problems, rather than coding
(Maloney et al. 2010; Morelli et al. 2011). The benefit of the using such tool is in the
high motivation of students to develop mobile applications. In addition, students
acquire knowledge of interface design development, object-event programming in
mobile application development (Wagner et al. 2013). In the work (Karakozov and
Manyakhina 2016), an analysis of South Korean textbooks on computer science of
primary and secondary schools is carried out. The textbooks provide content on
teaching schoolchildren to program and develop mobile applications using Scratch
and App Inventor. Middle school students (Grades 5–7) having gained in elementary
school experience in developing animated stories and games in the Scratch environ-
ment, move on to developing applications for mobile devices and programming
machines and robots. This is a non-standard approach that offers students learning
content according to modern information technologies. It is much more interesting for
students to develop applications for mobile devices that they use in their daily life than
for a personal computer. In addition, the principles of work in the App Inventor are
similar to Scratch, therefore, it provides an easy transition to it. The authors of the
textbook do not set a goal to teach students to develop complex applications for mobile
devices; they aim at popularly explain the basics of programming mobile applications.
During the course, the students acquire wide knowledge of the programming algo-
rithms and applying them in building Android based applications. Possessing such a set
of programming prerequisites, it will be easy for a student to adapt to the university
learning content and to master more complex topics on mobile application
development.

Considering opinions of researchers on necessity to bridging the knowledge gap
through continuity principle in learning content (Stone 2019; Buitrago Flórez et al.
2017; Dodero et al. 2017; Zorana 2003; Siadaty and Taghiyareh 2007; Offir et al.
2003), motivation for learning programming in primary and secondary schools
(Dillashaw and Bell 1985; Scherer et al. 2018; Kafai and Burke 2013; Inhelder and
Piaget 1958; Yardi and Bruckman 2007), the efficiency of learning programming in
Scratch and further move to the mobile application development in App Inventor

Education and Information Technologies

Author's personal copy

(Saltan 2016; Cheung et al. 2009; Maloney et al. 2010; Funke et al. 2017; Resnick et al.
2009; Morelli et al. 2011; Wagner et al. 2013; Karakozov and Manyakhina 2016) the
paper proposes a spiral model teaching the programming and mobile application
development in high school and university in context of the education system of
Kazakhstan, which can be used in countries with similar education system (see Fig. 4).

In the next section we will consider the content of the current computer science
curricula and the ensuing challenges.

3 Computer science content and programming training in Kazakhstan

At present, Kazakhstani schools pass to updated curricula content, in context of inte-
gration into the world educational space and compliance the national education system
with the standards of world educational practice, while maintaining the best traditions
and standards of national education. According to update curriculum the Information
and communications technology (ICT) course has been introduced in primary school
and the computer science course in secondary and high schools (Standard curriculum on
the subject, n.d.-a, Standard curriculum on the subject, n.d.-b). The «ICT» course is a
practical discipline that emphasized on the development of skills for the effective and
correct using of information and communication technology tools (mobile phones,
computers, players, digital cameras, video cameras, etc.) in the learning activities and
everyday life and the «Computer science» is a theoretical discipline that focuses on the
methods and processes of transforming information using computers.

The computer science curriculum is developed on the basis of the spiral principle,
according to which most of the learning objectives and topics after certain academic
periods of teaching (during the school year or in the following classes) are repeated
again at increasingly complex levels.

Programming falls under the head of «CT» which is learned from grades 5 to 11.
The content includes learning the following such as:

1. game programming environment Logo, Scratch (Grades 5–6);
2. integrated development environment for software development and high level

programming languages С/С++, Python, Delphi, Lazarus etc. (Grades 7–9);
3. object-oriented programming with C/C++, Python, Delphi, Lazarus, etc.; web

programming with HTML, XML, script language (grades 10–11); mobile appli-
cation development (grades 10–11).

In addition, analysis of the goals of high school curriculum on Computer science shows
several shortcomings of the updated curriculum on programming such as:

1. The choice of programming environment is made without due reflection. So, in
grades 5–6, it is proposed to learn the visual programming environments such as
Logo, Scratch, which allow programming multimedia stories, games, without
writing the code. In Scratch students programming with visual blocks and further
move to integrated development environments will be difficult, since it requires
coding skills in high-level C / C ++ languages, Python, Delphi, Lazarus, and
higher-order thinking skills (Saltan 2016);

Education and Information Technologies

Author's personal copy

2. The emphasis is made only on mastering the programming of a linear, branching
and loop structures, the classification of data types, the one-dimensional arrays,
components of an integrated development environment;

3. In Grades 10–11, the theme «Mobile Application Development» is covered, but no
one environment for mobile application development is considered and only few
hours are allocated.

The updated computer science curricula in high school offers more modern content,
focused on world educational trajectories and suit state-of-art computing technology.
However, it is necessary to contribute to creating a seamless continuum between
educational levels and well-thought choose environments and topics on programming
with a further focus on the development of smart devices and mobile applications.

4 Results and discussion

During the summer IT school, experimental training was conducted on the course
«Basics of iOS apps development» for the first-year students and IT-faculty. A total of
72 people were covered. To conduct a comparative analysis, the students were divided
into three groups: students as Computer science preservice teachers, students of IT-
majors and IT-faculty. Before training preliminary testing and survey were conducted to
determine the level of basic knowledge of programming. Testing showed a very low
level of basic knowledge of students - Computer science preservice teachers - at the
level of 48%. Students of IT-majors have a basic programming knowledge of 76%. IT-
faculty showed the highest result of 97% (see Fig. 1).

To answer the research question, knowledge analysis was held to find out in which
topics students have gaps and how this impacts on achievement on the mobile
application development.

Fig. 1 Outcomes of preliminary testing of students for the level on programming

Education and Information Technologies

Author's personal copy

The preliminary assessment test contained questions on basic topics, namely knowl-
edge of algorithmic structures, stages of the software development life cycle, code
debugging, input-output operators, loop operators, mathematical functions, principles
and concepts of object-oriented programming.

As shown in Fig. 2 Computer science preservice teachers are at the lowest level of
basic knowledge in all topics. On such topics as loop operators, mathematical func-
tions, principles and concepts of object-oriented programming they demonstrate an
insufficient level of knowledge, less than 50%. On topics of algorithmic structures,
stages of the software development life cycle, debugging of the program code, input-
output operators they display the average level of basic knowledge. Such a low level of
basic knowledge is explained by the fact that students at high school learned only the
Pascal programming language within the short course duration (Fig. 3).

Students of IT-majors have an insufficient level of basic knowledge (less than 50%)
on the «Mathematical functions». In such topics as «The stages of the software
development life cycle», «Code debugging», «Loop operators» they display the aver-
age level of knowledge. In the topics of «Algorithmic structures», «Principles and
concepts of object-oriented programming» they have a high level of basic knowledge.

This Gap in the knowledge of IT- majors and Computer science preservice teachers
is a consequence of the Gap in curricula. At school all students learned Pascal, and in
the first year IT students, unlike preservice teachers, learned Java, C #, C ++, Delphi
(Fig. 3).

The highest level of knowledge is displayed by faculty who have a certain experi-
ence in teaching programming languages and software development. In all topics, the
level of basic knowledge is sufficient and high (Fig. 2). As shown in the diagram
(Fig. 3), the faculty pointed to the knowledge of the languages Pascal, C ++, C#, Java,
Delphi, PHP, Objective C.

Fig. 2 The results of preliminary testing on programming in the context of basic topics

Education and Information Technologies

Author's personal copy

Thus, preliminary testing showed different levels of basic programming knowledge,
depending on the level of high school and university training. To determine the impact
of the basic programming knowledge on the further achievement of mobile application
development, it is need to consider the content and learning outcomes of the course
«Basics of iOS apps development».

During the hands-on course «Basics of iOS apps development», the participants of
the summer school learned how to develop mobile applications in the X-code envi-
ronment in the Objective-C language. The following topics were covered in the course
to lay the knowledge basis on mobile application development:

1. Basics of creating a Single View application.
2. The UI controllers.
3. The using the multimedia.
4. The using sensors in the application.
5. The programming complex View.
6. SQLite database.
7. Final project.

During in-class students learned how to develop mathematical models and algorithms
for mobile applications using demo examples of mobile applications. During hands-on
session the students created applications according to the instructions, tested and
debugged the applications. To consolidate the skills under the individual work, students
developed their own applications, working in small team. Such course organization
allowed implementing a spiral model, which proposes scaffolding through enriching
and enhancing developed mobile applications. The in-class structure is not a linear, it
has a spiral structure. It means that the challenge set at the beginning of the in-class
requires to be returned to it repeatedly during the in-class. During the course, students

Fig. 3 The results of the survey «What programming languages have you been studying earlier?»

Education and Information Technologies

Author's personal copy

developed projects from simple «Hi, Kazakhstan! « to a complete software with
functions of search and update from the Internet.

The knowledge and skills to develop mobile applications was assessed in two ways:
achievement test and criterial assessment of developed projects. Assessment of mobile
applications took into account the following criteria: understanding of the task, the
correctness of the algorithm for problem solving, application logic, programing tech-
nique, user interface design style, teamwork, self sufficiency of teamwork.

The results of achievement test and evaluation developed projects for the three
groups are shown in Table 1.

As can be seen from the table, computer science preservice teacher are still lagging
behind in the knowledge of mobile application development from IT-Majors. Obser-
vation and achievement test results showed that students found difficulty in developing
application logic, coding and debugging a mobile application. This indicates a poor
development of CT among students, that is, the ability to analyze and solve a problem,
logically analyze the program code and gain experience from it. The reason for this is
that in high school the programming is learned only in context of Pascal programming
language and within the short course duration. In teaching such students, the lecturer
needed more time for detailed explanation of the theoretical material and performing
hands-on projects. However, a special approach to the course teaching, based on the
spiral principle and collaborative interaction between lecturer and students, allowed to
achieve the learning objective and to motivate computer science preservice teachers.
The survey results show a high motivation (100%) to continue learning the course
mobile development, which is explained by the popularity of the mobile computing
field.

IT-Majors and IT-faculty are more self-sufficient in performing hands-on projects
and have proficient CT skills, which is consist in the ability to analyze and solve a
problem, perform debugging, gain experience through analyzing demo examples,
creatively perform individual tasks. A sufficient level of preliminary knowledge of
programming languages among IT-majors and IT-faculty (76% and 97%) provided a
good foundation for acquiring and adapting to new learning content of mobile devel-
opment. Thus, during the experiment, we came to the conclusion that the level of basic
programming knowledge influences the aquisition of a more complex content in the
design of mobile applications. Moreover, the results of experimental training obtained
during survey, testing and pedagogical observation confirm the availability several
types of the knowledge gap: 1) the gap between the actual basic knowledge of high
school students and the knowledge necessary for the successful mastery of university
learning content corresponding to state-of-the-art computing; 2) the gap in the curric-
ulum of first-year IT-Majors and computer science preservice teacher.

Table 1 The results of the achievement testing and evaluation application of course participants (average
value)

IT-Majors Computer Science Preservice Teachers IT-faculty

Achievement test 81% 67% 89%

App evaluation 87% 75% 92%

Education and Information Technologies

Author's personal copy

In this regard, the computer science high school curriculum should provide better
achievement of the basic programming principles, the basic concepts of object-oriented
programming and the basic principles of mobile application development.

5 Conclusion

Having studied international experience on bridging the gap in students’ knowledge at
high school and university level, we can conclude that one of the possible approaches
to solve the research question is to overhaul school and university curricula with a
progressive enhancement and develop knowledge from basic programming to mobile
application development. Due to this approach, the learning units of knowledge,
established at the elementary level, are progressively enhanced from one educational
stage to another and developing appropriate skills. In this regard, it is advisable to
implement a spiral model teaching mobile application development, according to which
learning content in high school and university should be planned in terms of the spiral
principle (Bruner 1960). This model should be applied to all IT-Majors, including
Computer science preservice teachers, who must master mobile technologies at a
professional level in order to train and apply them in the educational process.

Considering opinions of researchers on necessity to bridging the knowledge gap
through continuity principle in learning content (Stone 2019; Buitrago Flórez et al.
2017; Dodero et al. 2017; Zorana 2003; Siadaty and Taghiyareh 2007; Offir et al.
2003), motivation for learning programming in primary and secondary schools
(Dillashaw and Bell 1985; Scherer et al. 2018; Kafai and Burke 2013; Inhelder and
Piaget 1958; Yardi and Bruckman 2007), the efficiency of learning programming in

Fig. 4 Spiral model teaching mobile application development

Education and Information Technologies

Author's personal copy

Scratch and further move to the mobile application development in App Inventor
(Saltan 2016; Cheung et al. 2009; Maloney et al. 2010; Funke et al. 2017; Resnick
et al. 2009; Morelli et al. 2011; Wagner et al. 2013; Karakozov and Manyakhina 2016),
the moving from graphic to text programming languages (Cheung et al. 2009), the
article proposes a spiral model, teaching the programming and mobile application
development in high school and university in the context of the education system of
Kazakhstan, which can be used in countries with similar education system (see Fig. 4).

The spiral model covers all levels of teaching programming from high school to
higher education and suggests developing knowledge from introductory programming
to mobile application development with the following educational path:

1. The teaching of the basic principles of programming using the object language of
Scratch.

2. Development of animated story, game and multimedia applications in the Scratch
environment.

3. Mobile application development using MIT App Inventor.
4. Moving from graphic languages to text programming languages. Learning the

basis of object-oriented languages such as Java, C ++, etc.
5. The deeper learning of object-oriented programming languages such Java, Swift

for the development of cross-platform mobile applications.
6. Development of mobile games and mobile applications with the implementation of

artificial intelligence, machine learning, block chain, augmented reality.

The first four levels must be implemented in high school. Moreover, the emphasis is
laid on mastering the basic principles of programming and developing mobile appli-
cations through graphic or visual programming environments such as Scratch, MIT
App Inventor. The model also provides a level of moving from visual or graphical
programming environments to higher-level text-based programming languages. The
fifth and sixth levels of the model imply implementation at the university level and are
focused on learning how to develop mobile games and mobile applications due to
global trends of mobile computing.

The proposed spiral model teaching mobile application development is based on the
study of international experience in the field of teaching programming and mobile
application development in the high school and university and on the current state of
the national system of teaching programming.

This model can be used in the development of curricula in computer science at high
school and educational programs at university, as well as to build a methodological
system for teaching programming and mobile application development at different
levels from high school to university in order to train highly qualified in-demand
mobile developers.

References

Alston, P. (2012). Teaching Mobile Web Application Development: Challenges Faced And Lessons Learned,
In: Proceedings of 13th Annual Conference on Information Technology Education (SIGITE ‘12), 239–
244. https://doi.org/10.1145/2380552.2380620

Education and Information Technologies

Author's personal copy

https://doi.org/10.1145/2380552.2380620

Araujo, L. G. J., Bittencourt, R. A., & Santos, D. (2018). An Analysis of a Media-Based Approach to Teach
Programming to Middle School Students. In Proceedings of The 49th ACM Technical Symposium on
Computer Science Education, Baltimore, MD, USA, Feb. 21–24, 2018 (SIGCSE ‘18), https://doi.
org/10.1145/3159450.3159526

Bers, M. U. (2017). Coding as a playground: Programming and CT in the early childhood classroom.
Routledge.

Bruner, J. S. (1960). The process of education. Cambridge: Harvard University Press.
Buitrago Flórez, F., Casallas, R., Hernández, M., Reyes, A., Restrepo, S., & Danies, G. (2017). Changing a

generation’s way of thinking: Teaching CT through programming. Review of Educational Research,
87(4), 834–860.

Cheung, J., Ngai, G., Chan, S., and Lau, W. (2009). Filling the gap in programming instruction: A text-
enhanced graphical programming environment for junior high students, SIGCSE Symposium on
Computer Science Education, Chattanooga, TN, March 2009, pp. 276–280.

Coelho, C. S., & Moles, D. R. (2016). Student perceptions of a spiral curriculum. European Journal of Dental
Education, 20(3), 161–166.

Dillashaw, F., & Bell, S. (1985). Learning outcomes of computer programming instruction for middle-grades
students: A pilot study, Proceedings of the 58th annual meeting of the National Association for research in
science technology. IN: Indiana Retrieved from https://files.eric.ed.gov/fulltext/ED255360.pdf.

Dodero, J.M., Mota, J.M., & Ruiz-Rube, I. (2017). Bringing CT to teachers' training: Aworkshop review. In
Proceedings of the 5th International Conference on Technological Ecosystems for Enhancing
Multiculturality (p. 4). ACM.

Fronza I, Corral L, Pahl C (2019). Combining Block-Based Programming and hardware prototyping to Foster
CT. In Proceedings of the 20th Annual SIG Conference on Information Technology Education (pp. 55-
60). ACM.

Funke, A., Geldreich, K., & Hubwieser, P. (2017). Analysis of scratch projects of an introductory program-
ming course for primary school students. In 2017 IEEE Global Engineering Education Conference
(EDUCON) (pp. 1229-1236). IEEE.

Good, J., Yadav, A., & Mishra, P. (2017). CT in computer science classrooms: Viewpoints from CS educators.
In Society for Information Technology & Teacher Education International Conference (pp. 51-59).
Association for the Advancement of computing in education (AACE).

Inhelder, B., & Piaget, J. (1958). An essay on the construction of formal operational structures. The growth of
logical thinking: From childhood to adolescence (A. Parsons & S. Milgram, Trans.). New York: Basic
Books. 10. 1037/10034-000.

Joshi, G., & Desai, P. (2016). Building software testing skills in undergraduate students using spiral model
approach. In 2016 IEEE eighth international conference on technology for education (t4e) (pp. 244-245).
IEEE.

Kafai, Y., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta Kappan, 95(1), 61–65.
https://doi.org/10.1177/003172171309500111. https://www. researchgate. net/publication/256005803.
Accessed: 25 May 2019.

Karakozov S.D., Manyakhina V.G. (2016). Teaching informatics in South Korea: The analysis of textbooks
for primary and secondary schools. Informatics and Education (1):11–16. (In Russ.)

Maloney, J., Resnick, M., Rusk, N., Silverman, B., & Eastmond, E. (2010). The scratch programming
language and environment. ACM Transactions on Computing Education (TOCE), 10(4), 16.

Morelli, R., de Lanerolle, T., Lake, P., Limardo, N., Tamotsu, E., & Uche, C. (2011). Can android app inventor
bring CT to k-12. In Proc. 42nd ACM technical symposium on Computer science education (SIGCSE'11).

Z. Nurbekova, G. Aimicheva, (2018) «Teaching Mobile Application Development: from the Idea to the
Result», 3rd International Conference on Computer Science and Engineering (UBMK) IEEE, pp. 666-
669, 2018.

Offir, B., Barth, I., Lev, Y. & Shteinbok, A. (2003). Teacher–student interactions and learning outcomes in a
distance learning environment. Internet and Higher Education, 6(1), 65-75. Elsevier Ltd. https://www.
learntechlib. org/p/96514/. Accessed: 17 May 2019.

Papert, S. (1980). Mindstorms. In Children, computers and powerful ideas. New York: Basic books.
Papert, S. (1991). Situating constructionism. In S. Papert & I. Harel (Eds.), Constructionism. Cambridge: MIT

Press.
Pinar, Muyan-Özçelik (2017). A hands-on cross-platform mobile programming approach to teaching OOP

concepts and design patterns, Proceedings of the 1st International Workshop on Software Engineering
Curricula for Millennials, May 20–28, Buenos Aires, Argentina. https://doi.org/10.1109/SECM.2017.12

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., . & Kafai, Y. B.
(2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60–67.

Education and Information Technologies

Author's personal copy

https://doi.org/10.1145/3159450.3159526
https://doi.org/10.1145/3159450.3159526
https://files.eric.ed.gov/fulltext/ED255360.pdf
https://psycnet.apa.org/doi/10.1037/10034-000
https://doi.org/10.1177/003172171309500111
https://www.researchgate.net/publication/256005803
https://www.learntechlib.org/p/96514/
https://www.learntechlib.org/p/96514/
https://doi.org/10.1109/SECM.2017.12

Saltan, F. (2016). Looking at algorithm visualization through the eyes of pre-service ICT teachers. Universal
Journal of Educational Research, 4(2), 403–408.

Scherer, R., Siddiq, F., & Sánchez Viveros, B. (2018). The cognitive benefits of learning computer program-
ming: A meta-analysis of transfer effects. Journal of Educational Psychology. Advance online publica-
tion. https://doi.org/10.1037/edu0000314.

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying CT. Educational Research Review, 22, 142–
158.

Siadaty, M., Taghiyareh, F. (2007) PALS2: Pedagogically adaptive learning system based on learning styles,
icalt, (pp. 616-618), 7th IEEE International Conference on Advanced Learning Technologies (ICALT).
https://doi.org/10.1109/ICALT.2007. 198. https://www. researchgate. net/publication/221424232.
Accessed: 09 May 2019.

Standard curriculum on the subject (n.d.-a). «Computer science» for grades 5–9 of basic secondary education
on the updated content. Developed in accordance with the State compulsory standard of secondary
education (primary, basic secondary, General secondary education), approved by the Government of the
Republic of Kazakhstan dated August 23, 2012 № 1080.

Standard curriculum on the subject (n.d.-b). «Computer science» for grades 10–11 of basic secondary
education on the updated content. Developed in accordance with the State compulsory standard of
secondary education (primary, basic secondary, General secondary education), approved by the
Government of the Republic of Kazakhstan dated August 23, 2012 № 1080.

Stone, J. A. (2019). Student perceptions of computing and computing majors. Journal of Computing Sciences
in Colleges, 34(3), 22–30.

Taft, D. K. (2007). Programming grads meet a skills gap in the real world. Retrieved September.
Tan, P.H., Ting, C. Y., & Ling, S. W. (2009). Learning difficulties in programming courses: undergraduates'

perspective and perception, International Conference on Computer Technology and Development 2009
(ICCTD'09), 42–46, 2009.

Wagner, A., Gray, J., Corley, J., and Wolber, D., (2013). Using App Inventor in a K - 12 Summer Camp,
SIGCSE '13 , 621–626.

Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.
Yardi, S. & Bruckman, A. (2007) What is computing?: Bridging the gap between teenagers’ perceptions

andgraduate students’ experiences. In Anderson, R., Fincher, S., & Guzdial, M. (Eds.), Proceedings of the
Third internat ional Workshop on Computing Educat ion.https: / /www. cc. gatech.
edu/conferences/icer2007/slides/yardi-talk. pdf. Accessed: 11 May 2019.

Zorana, E. (2003). Bridging the knowledge gap between secondary and higher education. College and
Research Libraries, 64, 75–85. https://doi.org/10.5860/crl.64.1.75 https://www. researchgate.
net/publication/279437426.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Education and Information Technologies

Author's personal copy

https://doi.org/10.1037/edu0000314
https://doi.org/10.1109/ICALT.2007
https://www.researchgate.net/publication/221424232
https://www.cc.gatech.edu/conferences/icer2007/slides/yardi-talk.pdf
https://www.cc.gatech.edu/conferences/icer2007/slides/yardi-talk.pdf
https://doi.org/10.5860/crl.64.1.75
https://www.researchgate.net/publication/279437426
https://www.researchgate.net/publication/279437426

Affiliations

G. Aimicheva1 & Zh. Kopeyev1 & Zh. Ordabayeva2 & N. Tokzhigitova3 & S.
Akimova4

Zh. Kopeyev
zhanat_kb@mail.ru

Zh. Ordabayeva
zhamalika@mail.ru

N. Tokzhigitova
nurgul287@mail.ru

S. Akimova
saule_akim@mail.ru

1 Department of Computer science, L.N. Gumilyov Eurasian National University, Nur-Sultan, Kazakhstan

2 Senior lecturer at Pavlodar State University named after S. Toraigyrov, Pavlodar, Kazakhstan

3 Pavlodar State University named after S. Toraigyrov, Pavlodar, Kazakhstan

4 Senior lecturer at M.Utemisov West-Kazakhstan State University, Uralsk, Kazakhstan

Education and Information Technologies

Author's personal copy

	A spiral model teaching mobile application development in terms of the continuity principle in school and university education
	Abstract
	Introduction
	The learning programming: A literature review
	Computer science content and programming training in Kazakhstan
	Results and discussion
	Conclusion
	References

